
Database Programming
with Perl and
DBIx::Class

Dave Cross
dave@perlschool.co.uk

9th February 2013

Perl School
 Low cost Perl training
 Training at all levels
 Trying to build a buzz about Perl
 Perl is not dead
 Perl is Modern

9th February 2013

Xkcd Says

9th February 2013

Your Help Please
 Trying to build a buzz about Perl
 You can help
 Please tell your friends
 Blog
 Twitter
 Facebook
 http://perlschool.co.uk

9th February 2013

Upcoming Courses

 Perl School 5: Object Oriented Programming
with Perl and Moose

 6th April 2013

 Perl School 6: Database Programming with
Perl and DBIx::Class

 8th June 2013

 http://perlschool.co.uk/upcoming/

9th February 2013

Admin Stuff

 Tickets
 Facilities
 Lunch
 Slides
 Feedback

9th February 2013

Timings
 10:00 Session 1
 11:15 Break
 11:30 Session 2
 13:00 Lunch
 14:00 Session 3
 15:30 Break
 15:45 Session 4
 17:00 End

9th February 2013 8

What We Will Cover

 Introduction to relational databases
 Introduction to databases and Perl

 DBI
 ORM

 Schema Classes
 Basic DB operations

 CRUD

9th February 2013 9

What We Will Cover

 Advanced queries
 Ordering, joining, grouping

 Extending DBIC
 Deploying and updating schemas
 DBIC and Moose
 Further information

Relational Databases

9th February 2013 11

Relational Databases
 A Relational Model of Data for Large

Shared Data Banks

 Ted Codd (1970)

 Applying relational calculus to databases
 See also Chris Date

 Database in Depth (2005)

 SQL and Relational Theory (2011)

 Database Design and Relational Theory (2012)

9th February 2013 12

Relational Concepts

 Relation

 Table

 (Hence “relational”)

 Tuple

 Row

 Attribute

 Column

9th February 2013 13

Some More Concepts
 Primary key

 Unique identifier for a row within a table

 Foreign key

 Primary key of a table that appears in another
table

 Used to define relationships between tables

 e.g artist_id in a table containing CDs

9th February 2013 14

Referential Integrity

 Check that database is in a meaningful state

 No CDs without artist ID

 No artist IDs that don't exist in the artist table

 Constraints that ensure you can't break
referential integrity

 Don't delete artists that have associated CDs

 Don't insert a CD with a non-existent artist ID

9th February 2013 15

SQL

 Structured Query Language
 Standard language for talking to databases
 Invented by IBM early 1970s

 SEQUEL

 ISO/ANSI standard
 Many vendor extensions

9th February 2013 16

DDL & DML

 Two sides of SQL
 Data Definition Language

 Defines tables, etc
 CREATE, DROP, etc

 Data Manipulation Language
 Create, Read, Update, Delete data
 CRUD
 INSERT, SELECT, UPDATE, DELETE

Databases and Perl

9th February 2013 18

Talking to Databases

 Database vendors supply an API
 Usually a C library
 Defines functions that run SQL against a DB
 All vendors' APIs do the same thing
 All vendors' APIs are completely different

9th February 2013 19

Ancient History
 Perl 4 had ways to link to external libraries

 Like database APIs

 Static linking only
 Build a separate Perl binary for every

database

 oraperl, sybperl, etc

 Call API functions from Perl code

9th February 2013 20

The Middle Ages

 Perl 5 introduced dynamic linking
 Load libraries at compile time
 Oraperl, Sybperl etc became CPAN modules
 use Oraperl;

 Still writing DB-specific code

9th February 2013 21

Early Modern Era

 DBI.pm
 Standard database interface
 Database driver converts to API functions

 DBD::Oracle, DBD::Sybase, etc
 Code becomes more portable
 (Except for vendor extensions)

9th February 2013 22

DBI Architecture

9th February 2013 23

DBI Architecture

 Programmer writes code to DBI spec
 DBD converts code to database API
 DBD converts Perl data structures as

appropriate
 DBD converts returns data into Perl data

structures

9th February 2013 24

Loading DBI

 use DBI;

 No need to load specific DBD library

 Sometimes DBD exports constants that you will
need

9th February 2013 25

Connecting to DB

 Communicate with database through a
“database handle”

 my $dbh = DBI->connect(
 'dbi:mysql:host=foo.com:database=foo',
 $username, $password, \%options
);

 Different DBDs have different options
 'mysql' defines the DBD to load

 DBD::mysql in this case

9th February 2013 26

Selecting Data

 Select data using a prepare/execute/fetch
cycle

 my $sql = 'select col1, col2 from some_tab';
my $sth = $dbh->prepare($sql);
$sth->execute;
while (my $row = $sth->fetch) {
 say join ' : ', @$row;
}

9th February 2013 27

Inserting Data

 Insert data using a similar approach
 my $sql = 'insert into some_table (id, col1)

 values (1, “Foo”)';
my $sth = $dbh->prepare($sql);
$sth->execute; # No fetch required

 Or using do(...) shortcut
 $dbh->do($sql);

9th February 2013 28

Updating and Deleting

 Update or delete data in exactly the same
way

 my $sql = 'update some_table set col1 = “Bar”
 where id = 1';
my $sth = $dbh->prepare($sql);
$sth->execute;

 Or
 $dbh->do('delete from some_table

 where id = 1');

9th February 2013 29

DBI Advantages

 Standard API for interacting with databases
 Programmer no longer needs to understand

vendor APIs
 Except the DBD author

 Increased programmer productivity
 Increased programmer flexibility

9th February 2013 30

DBI Disadvantages

 Programmers still writing raw SQL
 Which is boring
 And error-prone

 DBI returns “dumb” data structures
 Arrays or hashes
 Often need to be converted into objects

9th February 2013 31

DB Frameworks

 10 years ago people started writing SQL
generators

 Store a DB row in a hash
 DBI has a fetchrow_hashref() method

 Generate SQL for simple CRUD operations

9th February 2013 32

Next Steps

 Turn those hashes into objects
 Class knows table name
 Class knows column names
 Class knows primary key
 SQL generation moved into superclass
 All DB tables have an associated class

Object Relational
Mapping

9th February 2013 34

Relational Database

 Consider database storage structures
 A table defines a type of data that can be

stored
 A row is a single instance of that type of

data
 A column is an attribute of that instance

9th February 2013 35

Object Oriented

 Consider OO storage structures
 A class defines a type of data that can be

stored
 An object is a single instance of that type of

data
 An attribute is an attribute of that instance

9th February 2013 36

ORM

 Database concepts and OO concepts map
well onto each other

 A database table is a lot like an OO class
 A database row is a lot like an OO object
 A database column is a lot like an OO

attribute
 We can use this to make our lives easier

9th February 2013 37

ORM Principles

 A Object Relational Mapper converts
between database data and objects

 In both directions
 Select data from the database and get an

object back
 Change that object and update the database

automatically

9th February 2013 38

Replacing SQL

 Instead of
 SELECT *
FROM my_table
WHERE my_id = 10

 and then dealing with the
prepare/execute/fetch code

9th February 2013 39

Replacing SQL

 We can write
 use My::Object;

warning! not a real orm
my $obj = My::Object->retrieve(10)

 Or something similar

9th February 2013 40

Perl ORM Options

 Plenty of choices on CPAN
 Fey::ORM
 Rose::DB
 Class::DBI
 DBIx::Class

 The current favourite

DBIx::Class

9th February 2013 42

DBIx::Class

 Standing on the shoulders of giants
 Learning from problems in Class::DBI
 More flexible
 More powerful

9th February 2013 43

DBIx::Class Example

 Modeling a CD collection
 Three tables
 artist (id, name)
 cd (id, artist_id, title, year)
 track (id, cd_id, title, sequence)

Defining Classes

9th February 2013 45

DBIC Classes

 Two mandatory types of class
 One schema class

 CD::Schema
 One result class for each table

 CD::Schema::Result::Artist
 CD::Schema::Result::CD
 CD::Schema::Result::Track

9th February 2013 46

Schema Class

 Define schema class
 CD/Schema.pm
 package CD::Schema;
use strict;
use warnings;
use base qw/DBIx::Class::Schema/;

__PACKAGE__->load_namespaces();

1;

9th February 2013 47

Result Classes
 Need one result class for every table
 Needs to know

 The table name

 The column names

 The primary key

 Relationships to other tables

9th February 2013 48

Result Classes
 CD/Schema/Result/Artist.pm
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(# simple option
 qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
 'cds', 'CD::Schema::Result::CD',
 'artist_id'
);
1;

9th February 2013 49

Result Classes
 CD/Schema/Result/CD.pm
 package CD::Schema::Result::CD;

use base qw/DBIx::Class::Core/;

__PACKAGE__->table('cd');
__PACKAGE__->add_columns(
 qw/ id artist_id title year /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
 'artist', 'CD::Schema::Result::Artist',
 'artist_id'
);
__PACKAGE__->has_many(
 'tracks', 'CD::Schema::Result::Track', 'cd_id'
);
1;

9th February 2013 50

Result Classes
 CD/Schema/Result/Track.pm
 package CD::Schema::Result::Track;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('track');
__PACKAGE__->add_columns(
 qw/ id cd_id title sequence /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
 'cd', 'CD::Schema::Result::CD', 'cd_id'
);

1;

9th February 2013 51

Defining Columns
 At a minimum you must define column

names
 But you can give more information
 __PACKAGE__->add_columns(
 id => {
 data_type => 'integer',
 is_auto_increment => 1,
 },
 name => {
 data_type => 'varchar',
 size => 255,
 }
);

9th February 2013 52

Defining Relationships

 We have seen has_many and belongs_to
 Both ends of a many-to-one relationship
 Most common type of relationship
 Artists to CDs
 CDs to tracks
 Manager to employees
 Invoice to invoice lines
 Simple foreign key relationship

9th February 2013 53

Other Relationships

 has_one
 Only one child record
 Person has one home address

 might_have
 Optional has_one relationship

 Affects the SQL that is generated

9th February 2013 54

Don't Repeat Yourself

 The Pragmatic Programmer says “Don't
repeat yourself”

 Only one source for every piece of
information

 We are breaking this rule
 We have repeated data

9th February 2013 55

Repeated Information

 CREATE TABLE artist (
 artistid INTEGER PRIMARY KEY,
 name TEXT NOT NULL
);

9th February 2013 56

Repeated Information
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(# simple option
 qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
 'cds', 'CD::Schema::Result::CD',
 'artist_id'
);
1;

9th February 2013 57

Don't Repeat Yourself

 Information is repeated
 Columns and relationships defined in the

database schema
 Columns and relationships defined in class

definitions

9th February 2013 58

Don't Repeat Yourself

 Need to define one canonical representation
for data definitions

 Generate the other one
 Let's choose the DDL
 Generate the classes from the DDL

9th February 2013 59

Database Metadata

 Some people don't put enough metadata in
their databases

 Just tables and columns
 No relationships. No constraints
 You may as well make each column

VARCHAR(255)

9th February 2013 60

Database Metadata

 Describe your data in your database
 It's what your database is for
 It's what your database does best

9th February 2013 61

DBIC::Schema::Loader

 DBIx::Class::Schema::Loader
 Separate distribution on CPAN

 Creates classes by querying your database
metadata

 No more repeated data
 We are now DRY
 Schema definitions in one place

9th February 2013 62

dbicdump

 DBIC::Schema::Loader comes with a
command line program called dbicdump

 $ dbicdump CD::Schema dbi:mysql:database=cd root ''
Dumping manual schema for CD::Schema to
directory
Schema dump completed.

 $ find CD
CD
CD/Schema
CD/Schema/Result
CD/Schema/Result/Cd.pm
CD/Schema/Result/Artist.pm
CD/Schema/Result/Track.pm
CD/Schema.pm

Simple CRUD

9th February 2013

Loading DBIC Libraries

 Load the main schema class
 use CD::Schema;

 The load_namespaces call takes care of
loading the rest of the classes

9th February 2013

Connecting to DB

 The DBIC equivalent of a database handle is
called a schema

 Get one by calling the connect method
 my $sch = CD::Schema->connect(
 'dbi:mysql:database=cd', $user, $pass
);

 Connection parameters passed through to
DBI

9th February 2013

Inserting Data
 Interact with tables using a resultset object
 The schema class has a resultset method that

will give you a resultset object
 my $art_rs = $sch->resultset('Artist');

9th February 2013

Inserting Artists

 Use the create method on a resultset to insert
data into a table

 my @artists = ('Elbow',
 'Arcade Fire');

foreach (@artists) {
 $art_rs->create({ name => $_ });
}

 Pass a hash reference containing data
 Handles auto-increment columns

9th February 2013

Inserting Artists
 The create method returns a new artist

object

 Actually a CD::Schema::Result::Artist
 my $bowie = $art_rs->create({
 name => 'David Bowie'
});

 Result objects have methods for each
column

 say $bowie->id;

9th February 2013

Inserting Artists

 An alternative is to use the populate()
method

 my @artists = $art_rs->populate(
 ['name'],
 ['Arcade Fire'],
 ['Elbow'],
);

 Pass one array reference for each row
 First argument is a list of column names

9th February 2013

Insert Related Records

 Easy to insert objects related to existing
objects

 $bowie->add_to_cds({
 title => 'The Next Day',
 year => 2013
});

 Foreign key added automatically
 add_to_cds method added because of

relationships

9th February 2013

Reading Data

 Selecting data is also done through a
resultset object

 We use the search() method
 my ($bowie) = $art_rs->search({
 name => 'David Bowie'
});

9th February 2013

Reading Data

 There's also a find() method
 Use when you know there's only one

matching row
 For example, using primary key
 my $bowie = $art_rs->find({
 id => 3,
});

 my $bowie = $art_rs->find(3);

9th February 2013

Searching Relationships

 Defining relationships allows us to move
from object to object easily

 my $cd_rs = $sch->resultset('CD');
my ($cd) = $cd_rs->search({
 title => 'The Seldom Seen Kid'
});
say $cd->artist->name; # Elbow

 The artist() method returns the associated
artist object

9th February 2013

Searching Relationships

 This works the other way too

 my ($artist) = $art_rs->search({
 name => 'Elbow',
 });

foreach ($artist->cds) {
 say $_->title;
}

 The cds() method returns the associated CD
objects

9th February 2013 75

What Search Returns

 The search() method returns different things
in different contexts

 In list context it returns a list of result
objects that it has found

 In scalar context it returns another resultset
 That only contains the matching result objects

9th February 2013 76

What Search Returns
 my $artist = $art_rs->search({
 name => 'Elbow';
});

 $artist is a resultset object
 my ($artist) = $art_rs->search({
 name => 'Elbow';
});

 $artist is a result object

9th February 2013 77

Taming Search

 To get all of the result objects from a
resultset call its all() method

 my $artist = $art_rs->search({
 name => 'Elbow';
})->all;

 $artist is a result object

9th February 2013 78

Taming Search

 To get always get a resultset, use search_rs()
instead of search()

 my ($artist) = $art_rs->search_rs({
 name => 'Elbow';
});

 $artist is a resultset object

9th February 2013

Updating Data

 Once you have a result object you can
change any of its attributes

 $bowie->name('Thin White Duke');

 Use the update() method to save it to the
database

 $bowie->update();

9th February 2013

Updating Data

 You can also call update() on a resultset
 my $davids = $art_rs->search({
 name => { like => 'David %' },
});

$davids->update({
 name => 'Dave',
});

9th February 2013

Deleting Data

 Deleting works a lot like updating
 Delete a single record
 my ($britney) = $art_rs->search({
 name => 'Britney Spears'
});

$britney->delete;

9th February 2013

Deleting Data

 You can also delete a resultset
 my $cliffs = $art_rs->search({
 name => { like => 'Cliff %' }
});

$cliffs->delete;

9th February 2013

Cascading Deletes

 What if any of the artists have CDs in the
database?

 They get deleted too
 Referential integrity
 Prevent this by changing relationship

definition
 __PACKAGE__->has_many(

 'cds', 'CD::Schema::Result::CD', 'artistid',
 { cascade_delete => 0 },
);

9th February 2013

Insert Multiple Records

 Create can be used to insert many rows
 $art_rs->create({
 name => 'Arcade Fire',
 cds => [{
 title => 'The Suburbs'
 },
 {
 title => 'Funeral'
 }]
});

9th February 2013

Find or Insert
 Insert an object or return an existing one
 my $killers = $art_rs->find_or_create({
 name => 'The Killers'
});

 Note: Need a unique index on one of the
search columns

9th February 2013

Update or Create
 Update an existing object or create a new

one
 my $killers = $art_rs->update_or_create({
 name => 'The Killers'
});

 Note: Need a unique index on one of the
search columns

9th February 2013

Transactions

 Transactions protect the referential integrity
of your data

 Chunk of work that must all happen
 Temporary workspace for DB changes
 Commit or rollback at the end

9th February 2013

Transactions & DBIC

 Schema object has a txn_do() method
 Takes a code reference as a parameter
 Adds BEGIN and COMMIT (or

ROLLBACK) around code
 Transactions can include Perl code

9th February 2013

Transactions & DBIC
 $schema->txn_do(sub {
 my $obj = $rs->create(\%some_obj);
 $obj->add_to_children(\%some_child);

});

Advanced Searches

9th February 2013

Advanced Searches
 search() can be used for more complex

searchs
 See SQL::Abstract documentation for full

details

9th February 2013

AND

 Use a hash reference to combine conditions
using AND

 $person_rs->search({
 forename => 'Dave',
 email => 'dave@perlschool.co.uk'
});

 WHERE forename = 'Dave'
AND email = 'dave@perlschool.co.uk'

9th February 2013

OR

 Use an array reference to combine
conditions using OR

 $person_rs->search([{
 forename => 'Dave'
}, {
 email => 'dave@perlschool.co.uk'
}]);

 WHERE forename = 'Dave'
OR email = 'dave@perlschool.co.uk'

9th February 2013

Combinations

 Combine hash references and array
references for more flexibility

 $person_rs->search([{
 forename => 'Dave',
 username => 'dave'
}, {
 email = 'dave@perlschool.co.uk'
}]);

9th February 2013

Many Values for Column

 Use an array reference to test many values
for a column

 $person_rs->search({
 forename => ['Dave', 'David']
});

 WHERE forename = 'Dave'
OR forename = 'David'

9th February 2013

Using SQL

 SQL::Abstract supports some SQL options
 $person_rs->search({
 forename => { like => 'Dav%' }
});

 WHERE forename LIKE 'Dav%'

9th February 2013

Using SQL

 More SQL-like options
 $person_rs->search({
 forename => {
 '-in' => ['Dave', 'David']
 }
});

 WHERE forename IN ('Dave', 'David')

9th February 2013

Using SQL

 More SQL-like options
 $person_rs->search({
 birth_year => {
 '-between' => [1970, 1980]
 }
});

 WHERE birth_year
BETWEEN 1970 AND 1980

9th February 2013

Extra Search Attributes
 All of our examples have used one

parameter to search
 $rs->search(\%where_clause)

 Search takes an optional second parameter
 Defines search attributes
 $rs->search(\%where_clause, \%attrs)

9th February 2013

Select Specific Columns
 Default search selects all columns in a table

 Actually all attributes in the class

 Use the columns attribute to change this
 $person_rs->search({
 forename => 'Dave'
}, {
 columns => ['me.forename',
 'me.surname']
});

 Note table aliases

9th February 2013

Add Columns
 You can invent columns and add them to the

returned object
 $person_rs->search({

 forename => 'Dave'
}, {
 +columns => {
 namelen => { length => 'me.forename' }
 }
});

 Use get_column() to access this data
 $person->get_column('namelen')

9th February 2013

Ordering Data

 Use search attributes to order the data
 $person_rs->search({
 forename => 'Dave'
}, {
 order => { '-asc' =>
 ['me.surname'] }
});

9th February 2013

Paging
 Select a subset of the data
 $person_rs->search({
 forename => 'Dave',
}, {
 rows => 10,
 page => 2
});

 You probably want to sort that query

9th February 2013

Joining Tables

 Use the join attribute to join to other tables
 $art_rs->search({}, {
 columns => ['me.name', 'cds.title'],
 join => ['cds']
});

 Join artist table to CD table
 Return artist name and CD title

9th February 2013

Aggregate Functions

 Use SQL aggregate functions like COUNT,
SUM and AVERAGE

 $person_rs->search({}, {
 columns => ['me.forename',
 name_count => {
 count => 'me.forename'
 }],
 group_by => ['me.forename']
});

 Use get_columns() to get the count

9th February 2013

Join and Aggregate

 Combine joins and aggregates
 $art_rs->search({}, {
 columns => ['me.name',
 cd_count => {
 count => 'cds.id'
 }],
 group_by => ['me.forename'],
 join => ['cds']
});

9th February 2013

Chaining Resultsets
 We said that search() can return a resultset
 We can call search() again on that resultset

to further specify the search
 And so on...

9th February 2013

Chaining Resultsets
 my $daves = $person_rs->search({
 forename => 'Dave'
});

my $women => $daves_rs->search({
 sex => 'F'
});

foreach ($women->all) {
 say $_->forename, ' ', $_->surname;
}

9th February 2013

Executing Resultsets
 A resultset is the definition of a query
 The query isn't run until you execute the

resultset
 By calling all(), first(), next(), etc

 $person_rs->all
 By calling search() in list context

 @daves = $person_rs->search({
 forename => 'Dave',
});

More on Result Classes

9th February 2013

Result Classes
 Result classes are usually generated by

DBIx::Class::Schema::Loader
 Define columns
 Define relationships
 But we can add our own code to these

classes

9th February 2013 112

Derived Columns
 Sometimes it's handy to have a “column”

that is derived from other columns
 Just add a method
 sub name {
 my $self = shift;

 return $self->forename, ' ',
 $self->surname;
}

9th February 2013 113

Actions
 Add methods defining actions that your class

needs to carry out
 sub marry {
 my $self = shift;
 my $spouse = shift;

 $self->spouse($spouse->id);
 $spouse->spouse($self->id);
}

9th February 2013 114

Column Inflation

 Inflate a column into a more useful class
when reading from database

 Deflate object into string before saving to
database

 e.g. Convert datetime column to DateTime
object

9th February 2013 115

DateTime Inflation

 This is a standard feature of DBIC
 DBIx::Class::InflateColumn::DateTime
 Load as a component

 __PACKAGE__->load_component(
 'DBIx::Class::InflateColumn::DateTime'
);

 Define column as datetime
 __PACKAGE__->add_columns(
 birth => { datatype => 'datetime' }
);

9th February 2013 116

DateTime Inflation
 my $person = $person_rs->first;

my $birth = $person->birth;

say ref $birth; # DateTime

say $birth->day_name;

 $person_rs->create({
 name => 'Some Person',
 birth => DateTime->now
});

9th February 2013 117

DBIC::Schema::Loader

 Use the -o command line option to include
components in generated classes

 dbicdump -o
components='[“InflateColumn::DateTime”]'
...

 Adds the load_components() call to the
classes

9th February 2013 118

Manual Inflation

 You can define your own inflation/deflation
code

 Use the inflate_column() method
 __PACKAGE__->inflate_column(
 'column_name' => {
 inflate_column => sub { ... },
 deflate_column => sub { ... },
 }
);

9th February 2013 119

Unicode Inflation

 Databases store strings as a series of bytes
 Well-behaved Unicode-aware code converts

bytes to characters as the string enters the
program

 And vice versa

 Many DBDs have a flag to do this
automatically

 Some don't

9th February 2013 120

Unicode Inflation
 use Encode;
__PACKAGE__->inflate_column(
 'some_text_column' => {
 inflate_column => sub {
 return decode('utf8', $_[0]);
 },
 deflate_column => sub {
 return encode('utf8', $_[0]);
 },
 }
);

9th February 2013 121

Relationships
 DBIx::Class::Schema::Loader generates

many kinds of relationships from metadata
 It doesn't recognise many-to-many

relationships

 Linking tables

 We can add them manually in the result
class

9th February 2013 122

Many to Many
 An actor appears in many films
 A film features many actors
 How do you model that relationship?
 Add a linking table

 Appearance

 Two foreign keys

9th February 2013 123

Many to Many

9th February 2013 124

Many to Many
 DBIx::Class::Schema::Loader finds the

standard relationships

 Actor has many Appearances

 Appearances belong to Actor

 Film has many Appearances

 Appearances belong to Film
 We can add a many to many relationship

 In both directions

9th February 2013

Many to Many
 Film::Schema::Result::Actor->many_to_many(
 'films', # new relationship name
 'appearances', # linking relationship
 'film' # FK relationship in link table
);

Film::Schema::Result::Film->many_to_many(
 'actors', # new relationship name
 'appearances', # linking relationship
 'actor', # FK relationship in link table
);

9th February 2013

Without Many to Many

 my $depp = $actor_rs->search({
 name => 'Johnny Depp'
});

foreach ($depp->appearances) {
 say $_->film->title;
}

9th February 2013

With Many to Many

 my $depp = $actor_rs->search({
 name => 'Johnny Depp'
});

foreach ($depp->films) {
 say $_->title;
}

9th February 2013

Editing Result Classes

 Editing result classes is useful
 But result classes are usually generated

 DBIx::Class::Schema::Loader

 How do we regenerate classes?
 Without overwriting our additions

9th February 2013

MD5 Hash

 A generated result class contains an MD5
hash

 # Created by DBIx::Class::Schema::Loader
v0.05003 @ 2010-04-04 13:53:54
DO NOT MODIFY THIS OR ANYTHING ABOVE!
md5sum:IvAzC9/WLrHifAi0APmuRw

 Add anything below this line
 Code below this line is preserved on

regeneration

9th February 2013

Resultset Classes

 We've looked a lot at editing result classes
 You can also edit resultset classes
 Often to add new search methods
 But resultset classes don't exist as files
 Need to create them first

9th February 2013

Resultset Class
 package App::Schema::Resultset::Person

use strict;
use warnings;

use base 'DBIx::Class::Resultset';

1;

9th February 2013

Default Search Values

 sub search_men {
 my $self = shift;

 return $self->search({
 sex => 'M'
 });
}

9th February 2013

Default Search Values

 sub search_men {
 my $self = shift;
 my ($cols, $opts) = @_;

 $cols ||= {};
 $opts ||= {};
 $cols->{sex} = 'M';
 return $self->search(
 $cols, $opts
);
}

9th February 2013

Default Search Options

 sub search_sorted {
 my $self = shift;

 return $self->search({}, {
 order_by => 'name ASC'
 });
}

 Similar changes for full version

Extending DBIC

9th February 2013 136

Extending DBIC

 DBIC is powerful and flexible
 Most of the time it can be made to do what

you want
 Sometimes you need to change its default

behaviour
 Override default methods

9th February 2013 137

Overriding Methods

 Overriding methods is a standard OO
technique

 Method in a subclass replaces one in a
superclass

 Define subclass method with same name
 Subclass method has new behaviour

9th February 2013 138

Overriding Methods

 Often the subclass behaviour needs to
happen in addition to the superclass
behaviour

 Subclass method needs to call the superclass
method

 Ugly syntax
 $self->SUPER::method()

9th February 2013 139

Overriding Methods

 sub do_something {
 my $self = shift;

 ...

 $self->SUPER::do_something(@_);

 ...
}

9th February 2013 140

Class::C3 / mro
 DBIC uses a non-standard method

resolution technique
 mro

 Method resolution order

 Specifically its Class::C3 implementation
 “better consistency in multiple inheritance

situations”

9th February 2013 141

Class::C3 / mro
 All you really need to know
 When overloading DBIC methods, use

$self->next::method instead of SUPER
 sub do_something {
 my $self = shift;
 ...
 $self->next::method(@_);
 ...
}

9th February 2013 142

Overriding new()
 Result classes don't include a new method
 That's defined in the DBIx::Class superclass
 We can override it
 sub new {
 my $class = shift;

 # do stuff

 return $self->next::method(@_);
}

9th February 2013 143

Overriding new()
 Defaults for missing attributes
 sub new {
 my $class = shift;
 my $obj = shift;

 # Set birthday if it's missing
 $obj->{birth} ||= DateTime->now;

 # Superclass method does real work
 return $self->next::method($obj);
}

9th February 2013 144

Overriding update()
 Add audit information
 sub update {
 my $self = shift;

 # Set audit columns
 $self->upd_time(DateTime->now);
 $self->upd_by($Curr_User);

 # Superclass method does real work
 $self->next::method();
 say $self->name, ' updated';
}

9th February 2013 145

Overriding delete()
 Don't really delete rows
 sub delete {
 my $self = shift;

 # Set deleted flag
 $self->deleted(1);

 # Don't call superclass method!
 $self->update;
}

9th February 2013 146

DBIC and Moose
 Moose is the future of OO Perl
 Moose makes OO Perl easier, more

powerful and more flexible
 Moose supports use alongside non-Moose

classes
 MooseX::NonMoose

 We can use DBIC with Moose

9th February 2013 147

Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

define relationships
...

__PACKAGE__->meta->make_immutable;

9th February 2013 148

Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

define relationships
...

__PACKAGE__->meta->make_immutable;

9th February 2013 149

Using Moose Class

 As far as the user (i.e. the application
programmer) is concerned there is no
difference

 The same code will work
 my $artist_rs = $schema->resultset('Artist');

 my $artist = $art_rs->create(\%artist);

 $artist->update;

 $artist_rs->search();

9th February 2013 150

Using Moose Class

 For the programmer writing the class, life
gets better

 We now have all of the power of Moose
 Particularly for overriding methods
 Method modifiers

9th February 2013 151

Method Modifiers

 More flexible and powerful syntax for
overriding methods

 More control over interaction between
subclass method and superclass method

 Easier syntax
 No $self->SUPER::something()
 No $self->next::method()

9th February 2013 152

Overriding new()
 Run subclass method before superclass

method
 before new => sub {
 my $class = shift;
 my $obj = shift;

 # Set birthday if it's missing
 $obj->{birth} ||= DateTime->now;

 # Superclass method run
 # automatically
}

9th February 2013 153

Overriding update()
 Run subclass method around superclass

method
 around update => sub {

 my $orig = shift;
 my $self = shift;

 # Set audit columns
 $self->upd_time(DateTime->now);
 $self->upd_by($Curr_User);

 # Superclass method does real work
 $self->$orig(@_);
 say $self->name, ' updated';
}

9th February 2013 154

Overriding delete()
 Run subclass method in place of superclass

method
 override delete => sub {
 my $self = shift;

 # Set deleted flag
 $self->deleted(1);

 # Don't call superclass method!
 $self->update;
}

9th February 2013 155

Adding Roles

 Moose roles are pre-packaged features that
can be added into your class

 Like mixins or interfaces in other OO
languages

 Added with the keyword “with”

9th February 2013 156

Role Example
 package App::Schema::Result::SomeTable;

use Moose;
use MooseX::NonMoose;

extends 'DBIx::Class::Core';
with 'Some::Clever::Role';

9th February 2013 157

DBIC::Schema::Loader

 DBIx::Class::Schema::Loader has built-in
support for Moose

 use_moose option
 With dbicdump
 $ dbicdump -o use_moose=1 CD::Schema \

 dbi:mysql:database=cd root ''

 Creates classes with the Moose lines
included

Deploying Schemas

9th February 2013

Changing Schemas

 Database schemas change over time
 Tables added
 Columns added
 Column definitions change
 DBIC has tools to manage that

9th February 2013

Don't Repeat Yourself

 We have two definitions of our database
schema

 DDL

 CREATE TABLE, etc

 DBIC

 Perl code

 Choose one as canonical source

9th February 2013

DDL vs DBIC

 We can create DBIC code from DDL

 DBIx::Class::Schema::Loader

 We can create DDL from DBIC

 $schema->deploy()

9th February 2013

Deploy

 Schema objects have a deploy() method
 Generates DDL

 Using SQL::Translator

 Applies it to connected database

 Can also see the DDL

 deployment_statements()

 create_ddl_dir()

9th February 2013

Schema Versions

 Versions change over time
 Need to cope with that
 Add a version to our schema class
 Set $VERSION

9th February 2013

Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;

9th February 2013

Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;

9th February 2013

create_ddl_dir

 The create_ddl_dir() method is clever
 Given a previous version of a schema
 It can create ALTER TABLE statements
 $schema->create_ddl_dir(
 ['MySQL'], $curr_ver,
 $directory, $preversion
);

 This will be very useful

9th February 2013

Deploying Versions

 DBIC includes a module called
DBIx::Class::Schema::Versioned

 Upgrades schemas

9th February 2013

DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
 qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);

9th February 2013

DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
 qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);

9th February 2013

Create Upgrade DDL
 use Getopt::Long;
use CD::Schema;

my $preversion, $help;
GetOptions(
 'p|preversion:s' => \$preversion,
) or die;

my $schema = MyApp::Schema->connect(...);

continued...

9th February 2013

Create Upgrade DDL
 my $sql_dir = './sql';

 my $version = $schema->schema_version();

 $schema->create_ddl_dir(
 'MySQL', $version, $sql_dir,
 $preversion
);

 Creates all the DDL you need
 Includes versioning tables

9th February 2013

Upgrade DB
 use CD::Schema;
my $schema = CD::Schema->connect(...);

if ($schema->get_db_version()) {
 # Runs all the upgrade SQL
 $schema->upgrade();
} else {
 # Schema is unversioned
 # Installs empty tables
 $schema->deploy();
}

9th February 2013

Better Tool

 DBIC::Schema::Versioned is part of the
standard DBIC package

 DBIC::DeploymentHandler is a separate
CPAN package

 More powerful
 More flexible

9th February 2013

DBIC::DeploymentHndlr

 Advantages

 Upgrades and downgrades

 Multiple SQL files in one upgrade

 Use Perl scripts for upgrade

 Disadvantages

 Dependency hell

Replication

9th February 2013

Replication

 Some databases allow multiple copies of the
same data

 Server software keeps replicants in step
 This can aid performance
 Different clients can talk to different servers
 Data on some replicants can lag

9th February 2013

Types of Replication

 Master-Slave

 One writeable copy of the database

 Many readable replicants

 e.g. MySQL

9th February 2013

Types of Replication

 Multiple Master

 Many writeable copies

 Potential for deadlocks

 e.g. Sybase

9th February 2013

DBIC & Replication

 DBIC has beta support for master/slave
replication

 Directs all writes to master connection
 Directs all reads to slave connection

9th February 2013

DBIC & Replication

 Set the storage_type attribute on our schema
object

 my $schema = CD::Schema->connect(...);

$schema->storage_type([
 '::DBI::Replicated',
 { balancer => 'Random' },
]);

9th February 2013

Add Slaves

 Add slave connections
 $schema->storage->connect_replicants(
 [$dsn1, $user, $pass, \%opts],
 [$dsn2, $user, $pass, \%opts],
 [$dsn3, $user, $pass, \%opts],
);

9th February 2013

Use Schema

 Use schema as usual
 Reads are delegated to a random slave
 Writes are delegated to the master
 You can force a read to the master
 $rs->search({ ... },
 { force_pool => 'master' });

 Avoid race conditions

Further Information

9th February 2013

Documentation

 Lots of good DBIC documentation

 perldoc DBIx::Class

 perldoc DBIx::Class::Manual

 DBIx::Class::Manual::SQLHackers

 Separate documentation distribution

9th February 2013

Support

 Web site

 http://www.dbix-class.org/

 Mailing list

 See support page on web site

 IRC channel

 #dbix-class on irc.perl.org

9th February 2013

Books

 Good coverage in The Definitive Guide to
Catalyst

 Not completely up to date

 DBIC book being written

 Schedule unknown

That's All Folks

• Any Questions?

• Any Questions?

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51
	ページ 52
	ページ 53
	ページ 54
	ページ 55
	ページ 56
	ページ 57
	ページ 58
	ページ 59
	ページ 60
	ページ 61
	ページ 62
	ページ 63
	ページ 64
	ページ 65
	Creating References
	ページ 67
	ページ 68
	ページ 69
	ページ 70
	ページ 71
	ページ 72
	ページ 73
	ページ 74
	ページ 75
	ページ 76
	ページ 77
	ページ 78
	ページ 79
	ページ 80
	ページ 81
	ページ 82
	ページ 83
	ページ 84
	Using References
	ページ 86
	ページ 87
	ページ 88
	ページ 89
	ページ 90
	ページ 91
	ページ 92
	ページ 93
	ページ 94
	ページ 95
	ページ 96
	ページ 97
	ページ 98
	Why Use References?
	ページ 100
	ページ 101
	ページ 102
	ページ 103
	ページ 104
	Why Use Reference?
	Complex Data Structures
	Complex Data Structure
	More Complex Data Structures
	ページ 109
	ページ 110
	ページ 111
	ページ 112
	ページ 113
	ページ 114
	ページ 115
	ページ 116
	ページ 117
	ページ 118
	ページ 119
	ページ 120
	ページ 121
	ページ 122
	ページ 123
	ページ 124
	ページ 125
	ページ 126
	ページ 127
	ページ 128
	ページ 129
	ページ 130
	ページ 131
	ページ 132
	ページ 133
	ページ 134
	ページ 135
	ページ 136
	ページ 137
	ページ 138
	ページ 139
	ページ 140
	ページ 141
	ページ 142
	ページ 143
	ページ 144
	ページ 145
	ページ 146
	ページ 147
	ページ 148
	ページ 149
	ページ 150
	ページ 151
	ページ 152
	ページ 153
	ページ 154
	ページ 155
	ページ 156
	ページ 157
	ページ 158
	ページ 159
	ページ 160
	ページ 161
	ページ 162
	ページ 163
	Why Use References
	ページ 165
	ページ 166
	ページ 167
	ページ 168
	ページ 169
	ページ 170
	ページ 171
	ページ 172
	ページ 173
	ページ 174
	ページ 175
	ページ 176
	ページ 177
	ページ 178
	ページ 179
	ページ 180
	ページ 181
	ページ 182
	ページ 183
	ページ 184
	ページ 185
	ページ 186
	ページ 187
	ページ 188

