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Perl School
 Low cost Perl training
 Training at all levels
 Trying to build a buzz about Perl
 Perl is not dead
 Perl is Modern
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Xkcd Says
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Your Help Please
 Trying to build a buzz about Perl
 You can help
 Please tell your friends
 Blog
 Twitter
 Facebook
 http://perlschool.co.uk
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Upcoming Courses

 Perl School 5: Object Oriented Programming 
with Perl and Moose

 6th April 2013

 Perl School 6: Database Programming with 
Perl and DBIx::Class

 8th June 2013

 http://perlschool.co.uk/upcoming/
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Admin Stuff

 Tickets
 Facilities
 Lunch
 Slides
 Feedback
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Timings
 10:00 Session 1
 11:15 Break
 11:30 Session 2
 13:00 Lunch
 14:00 Session 3
 15:30 Break
 15:45 Session 4
 17:00 End
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What We Will Cover

 Introduction to relational databases
 Introduction to databases and Perl

 DBI
 ORM

 Schema Classes
 Basic DB operations

 CRUD
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What We Will Cover

 Advanced queries
 Ordering, joining, grouping

 Extending DBIC
 Deploying and updating schemas
 DBIC and Moose
 Further information



Relational Databases
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Relational Databases
 A Relational Model of Data for Large 

Shared Data Banks

 Ted Codd (1970)

 Applying relational calculus to databases
 See also Chris Date

 Database in Depth (2005)

 SQL and Relational Theory (2011)

 Database Design and Relational Theory (2012)
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Relational Concepts

 Relation

 Table

 (Hence “relational”)

 Tuple

 Row

 Attribute

 Column
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Some More Concepts
 Primary key

 Unique identifier for a row within a table

 Foreign key

 Primary key of a table that appears in another 
table

 Used to define relationships between tables

 e.g artist_id in a table containing CDs
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Referential Integrity

 Check that database is in a meaningful state

 No CDs without artist ID

 No artist IDs that don't exist in the artist table

 Constraints that ensure you can't break 
referential integrity

 Don't delete artists that have associated CDs

 Don't insert a CD with a non-existent artist ID
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SQL

 Structured Query Language
 Standard language for talking to databases
 Invented by IBM early 1970s

 SEQUEL

 ISO/ANSI standard
 Many vendor extensions
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DDL & DML

 Two sides of SQL
 Data Definition Language

 Defines tables, etc
 CREATE, DROP, etc

 Data Manipulation Language
 Create, Read, Update, Delete data
 CRUD
 INSERT, SELECT, UPDATE, DELETE



Databases and Perl
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Talking to Databases

 Database vendors supply an API
 Usually a C library
 Defines functions that run SQL against a DB
 All vendors' APIs do the same thing
 All vendors' APIs are completely different
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Ancient History
 Perl 4 had ways to link to external libraries

 Like database APIs

 Static linking only
 Build a separate Perl binary for every 

database

 oraperl, sybperl, etc

 Call API functions from Perl code
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The Middle Ages

 Perl 5 introduced dynamic linking
 Load libraries at compile time
 Oraperl, Sybperl etc became CPAN modules
 use Oraperl;

 Still writing DB-specific code
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Early Modern Era

 DBI.pm
 Standard database interface
 Database driver converts to API functions

 DBD::Oracle, DBD::Sybase, etc
 Code becomes more portable
 (Except for vendor extensions)
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DBI Architecture
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DBI Architecture

 Programmer writes code to DBI spec
 DBD converts code to database API
 DBD converts Perl data structures as 

appropriate
 DBD converts returns data into Perl data 

structures
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Loading DBI

 use DBI;

 No need to load specific DBD library

 Sometimes DBD exports constants that you will 
need
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Connecting to DB

 Communicate with database through a 
“database handle”

 my $dbh = DBI->connect(
  'dbi:mysql:host=foo.com:database=foo',
  $username, $password, \%options
);

 Different DBDs have different options
 'mysql' defines the DBD to load

 DBD::mysql in this case
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Selecting Data

 Select data using a prepare/execute/fetch 
cycle

 my $sql = 'select col1, col2 from some_tab';
my $sth = $dbh->prepare($sql);
$sth->execute;
while (my $row = $sth->fetch) {
  say join ' : ', @$row;
}
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Inserting Data

 Insert data using a similar approach
 my $sql = 'insert into some_table (id, col1)

           values (1, “Foo”)';
my $sth = $dbh->prepare($sql);
$sth->execute; # No fetch required

 Or using do(...) shortcut
 $dbh->do($sql);
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Updating and Deleting

 Update or delete data in exactly the same 
way

 my $sql = 'update some_table set col1 = “Bar”
           where id = 1';
my $sth = $dbh->prepare($sql);
$sth->execute;

 Or
 $dbh->do('delete from some_table

          where id = 1');
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DBI Advantages

 Standard API for interacting with databases
 Programmer no longer needs to understand 

vendor APIs
 Except the DBD author

 Increased programmer productivity
 Increased programmer flexibility



9th February 2013 30

DBI Disadvantages

 Programmers still writing raw SQL
 Which is boring
 And error-prone

 DBI returns “dumb” data structures
 Arrays or hashes
 Often need to be converted into objects
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DB Frameworks

 10 years ago people started writing SQL 
generators

 Store a DB row in a hash
 DBI has a fetchrow_hashref() method

 Generate SQL for simple CRUD operations
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Next Steps

 Turn those hashes into objects
 Class knows table name
 Class knows column names
 Class knows primary key
 SQL generation moved into superclass
 All DB tables have an associated class



Object Relational
Mapping
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Relational Database

 Consider database storage structures
 A table defines a type of data that can be 

stored
 A row is a single instance of that type of 

data
 A column is an attribute of that instance
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Object Oriented

 Consider OO storage structures
 A class defines a type of data that can be 

stored
 An object is a single instance of that type of 

data
 An attribute is an attribute of that instance
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ORM

 Database concepts and OO concepts map 
well onto each other

 A database table is a lot like an OO class
 A database row is a lot like an OO object
 A database column is a lot like an OO 

attribute
 We can use this to make our lives easier
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ORM Principles

 A Object Relational Mapper converts 
between database data and objects

 In both directions
 Select data from the database and get an 

object back
 Change that object and update the database 

automatically
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Replacing SQL

 Instead of
 SELECT *
FROM   my_table
WHERE  my_id = 10

 and then dealing with the 
prepare/execute/fetch code
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Replacing SQL

 We can write
 use My::Object;

# warning! not a real orm
my $obj = My::Object->retrieve(10)

 Or something similar
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Perl ORM Options

 Plenty of choices on CPAN
 Fey::ORM
 Rose::DB
 Class::DBI
 DBIx::Class

 The current favourite



DBIx::Class
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DBIx::Class

 Standing on the shoulders of giants
 Learning from problems in Class::DBI
 More flexible
 More powerful
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DBIx::Class Example

 Modeling a CD collection
 Three tables
 artist (id, name)
 cd (id, artist_id, title, year)
 track (id, cd_id, title, sequence)



Defining Classes
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DBIC Classes

 Two mandatory types of class
 One schema class

 CD::Schema
 One result class for each table

 CD::Schema::Result::Artist
 CD::Schema::Result::CD
 CD::Schema::Result::Track



9th February 2013 46

Schema Class

 Define schema class
 CD/Schema.pm
 package CD::Schema;
use strict;
use warnings;
use base qw/DBIx::Class::Schema/;

__PACKAGE__->load_namespaces();

1;



9th February 2013 47

Result Classes
 Need one result class for every table
 Needs to know

 The table name

 The column names

 The primary key

 Relationships to other tables
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Result Classes
 CD/Schema/Result/Artist.pm
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns( # simple option
  qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
    'cds', 'CD::Schema::Result::CD',
    'artist_id'
);
1;
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Result Classes
 CD/Schema/Result/CD.pm
 package CD::Schema::Result::CD;

use base qw/DBIx::Class::Core/;

__PACKAGE__->table('cd');
__PACKAGE__->add_columns(
  qw/ id artist_id title year /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
  'artist', 'CD::Schema::Result::Artist',
  'artist_id'
);
__PACKAGE__->has_many(
  'tracks', 'CD::Schema::Result::Track', 'cd_id'
);
1;
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Result Classes
 CD/Schema/Result/Track.pm
 package CD::Schema::Result::Track;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('track');
__PACKAGE__->add_columns(
  qw/ id cd_id title sequence /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
  'cd', 'CD::Schema::Result::CD', 'cd_id'
);

1;
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Defining Columns
 At a minimum you must define column 

names
 But you can give more information
 __PACKAGE__->add_columns(
  id => {
    data_type => 'integer',
    is_auto_increment => 1,
  },
  name => {
    data_type => 'varchar',
    size => 255,
  }
);
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Defining Relationships

 We have seen has_many and belongs_to
 Both ends of a many-to-one relationship
 Most common type of relationship
 Artists to CDs
 CDs to tracks
 Manager to employees
 Invoice to invoice lines
 Simple foreign key relationship
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Other Relationships

 has_one
 Only one child record
 Person has one home address

 might_have
 Optional has_one relationship

 Affects the SQL that is generated
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Don't Repeat Yourself

 The Pragmatic Programmer says “Don't 
repeat yourself”

 Only one source for every piece of 
information

 We are breaking this rule
 We have repeated data
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Repeated Information

 CREATE TABLE artist (
  artistid INTEGER PRIMARY KEY,
  name     TEXT NOT NULL 
);
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Repeated Information
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns( # simple option
  qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
    'cds', 'CD::Schema::Result::CD',
    'artist_id'
);
1;
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Don't Repeat Yourself

 Information is repeated
 Columns and relationships defined in the 

database schema
 Columns and relationships defined in class 

definitions
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Don't Repeat Yourself

 Need to define one canonical representation 
for data definitions

 Generate the other one
 Let's choose the DDL
 Generate the classes from the DDL
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Database Metadata

 Some people don't put enough metadata in 
their databases

 Just tables and columns
 No relationships. No constraints
 You may as well make each column 

VARCHAR(255)
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Database Metadata

 Describe your data in your database
 It's what your database is for
 It's what your database does best
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DBIC::Schema::Loader

 DBIx::Class::Schema::Loader
 Separate distribution on CPAN

 Creates classes by querying your database 
metadata

 No more repeated data
 We are now DRY
 Schema definitions in one place



9th February 2013 62

dbicdump

 DBIC::Schema::Loader comes with a 
command line program called dbicdump

 $ dbicdump CD::Schema dbi:mysql:database=cd root ''
Dumping manual schema for CD::Schema to 
directory . ...
Schema dump completed.

 $ find CD
CD
CD/Schema
CD/Schema/Result
CD/Schema/Result/Cd.pm
CD/Schema/Result/Artist.pm
CD/Schema/Result/Track.pm
CD/Schema.pm



Simple CRUD
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Loading DBIC Libraries

 Load the main schema class
 use CD::Schema;

 The load_namespaces call takes care of 
loading the rest of the classes
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Connecting to DB

 The DBIC equivalent of a database handle is 
called a schema

 Get one by calling the connect method
 my $sch = CD::Schema->connect(
  'dbi:mysql:database=cd', $user, $pass
);

 Connection parameters passed through to 
DBI
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Inserting Data
 Interact with tables using a resultset object
 The schema class has a resultset method that 

will give you a resultset object
 my $art_rs = $sch->resultset('Artist');
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Inserting Artists

 Use the create method on a resultset to insert 
data into a table

 my @artists = ('Elbow',
               'Arcade Fire');

foreach (@artists) {
  $art_rs->create({ name => $_ });
}

 Pass a hash reference containing data
 Handles auto-increment columns
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Inserting Artists
 The create method returns a new artist 

object

 Actually a CD::Schema::Result::Artist
 my $bowie = $art_rs->create({
  name => 'David Bowie'
});

 Result objects have methods for each 
column

 say $bowie->id;
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Inserting Artists

 An alternative is to use the populate() 
method

 my @artists = $art_rs->populate(
  [ 'name' ],
  [ 'Arcade Fire' ],
  [ 'Elbow' ],
);

 Pass one array reference for each row
 First argument is a list of column names
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Insert Related Records

 Easy to insert objects related to existing 
objects

 $bowie->add_to_cds({
  title => 'The Next Day',
  year => 2013
});

 Foreign key added automatically
 add_to_cds method added because of 

relationships
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Reading Data

 Selecting data is also done through a 
resultset object

 We use the search() method
 my ($bowie) = $art_rs->search({
  name => 'David Bowie'
});
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Reading Data

 There's also a find() method
 Use when you know there's only one 

matching row
 For example, using primary key
 my $bowie = $art_rs->find({
  id => 3,
});

 my $bowie = $art_rs->find(3);
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Searching Relationships

 Defining relationships allows us to move 
from object to object easily

 my $cd_rs = $sch->resultset('CD');
my ($cd) = $cd_rs->search({
  title => 'The Seldom Seen Kid'
});
say $cd->artist->name; # Elbow

 The artist() method returns the associated 
artist object
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Searching Relationships

 This works the other way too

 my ($artist) = $art_rs->search({
                 name => 'Elbow',
               });

foreach ($artist->cds) {
  say $_->title;
}

 The cds() method returns the associated CD 
objects
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What Search Returns

 The search() method returns different things 
in different contexts

 In list context it returns a list of result 
objects that it has found

 In scalar context it returns another resultset
 That only contains the matching result objects
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What Search Returns
 my $artist = $art_rs->search({
  name => 'Elbow';
});

 $artist is a resultset object
 my ($artist) = $art_rs->search({
  name => 'Elbow';
});

 $artist is a result object
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Taming Search

 To get all of the result objects from a 
resultset call its all() method

 my $artist = $art_rs->search({
  name => 'Elbow';
})->all;

 $artist is a result object
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Taming Search

 To get always get a resultset, use search_rs() 
instead of search()

 my ($artist) = $art_rs->search_rs({
  name => 'Elbow';
});

 $artist is a resultset object
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Updating Data

 Once you have a result object you can 
change any of its attributes

 $bowie->name('Thin White Duke');

 Use the update() method to save it to the 
database

 $bowie->update();
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Updating Data

 You can also call update() on a resultset
 my $davids = $art_rs->search({
  name => { like => 'David %' },
});

$davids->update({
  name => 'Dave',
});
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Deleting Data

 Deleting works a lot like updating
 Delete a single record
 my ($britney) = $art_rs->search({
  name => 'Britney Spears'
});

$britney->delete;
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Deleting Data

 You can also delete a resultset
 my $cliffs = $art_rs->search({
  name => { like => 'Cliff %' }
});

$cliffs->delete;
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Cascading Deletes

 What if any of the artists have CDs in the 
database?

 They get deleted too
 Referential integrity
 Prevent this by changing relationship 

definition
 __PACKAGE__->has_many(

  'cds', 'CD::Schema::Result::CD', 'artistid',
  { cascade_delete => 0 },
);
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Insert Multiple Records

 Create can be used to insert many rows
 $art_rs->create({
  name => 'Arcade Fire',
  cds => [{
    title => 'The Suburbs'
  },
  {
    title => 'Funeral'
  }]
});
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Find or Insert
 Insert an object or return an existing one
 my $killers = $art_rs->find_or_create({
  name => 'The Killers'
});

 Note: Need a unique index on one of the 
search columns
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Update or Create
 Update an existing object or create a new 

one
 my $killers = $art_rs->update_or_create({
  name => 'The Killers'
});

 Note: Need a unique index on one of the 
search columns
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Transactions

 Transactions protect the referential integrity 
of your data

 Chunk of work that must all happen
 Temporary workspace for DB changes
 Commit or rollback at the end
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Transactions & DBIC

 Schema object has a txn_do() method
 Takes a code reference as a parameter
 Adds BEGIN and COMMIT (or 

ROLLBACK) around code
 Transactions can include Perl code
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Transactions & DBIC
 $schema->txn_do( sub {
  my $obj = $rs->create(\%some_obj);
  $obj->add_to_children(\%some_child);

});



Advanced Searches



9th February 2013

Advanced Searches
 search() can be used for more complex 

searchs
 See SQL::Abstract documentation for full 

details
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AND

 Use a hash reference to combine conditions 
using AND

 $person_rs->search({
  forename => 'Dave',
  email => 'dave@perlschool.co.uk'
});

 WHERE forename = 'Dave'
AND email = 'dave@perlschool.co.uk'
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OR

 Use an array reference to combine 
conditions using OR

 $person_rs->search([{
  forename => 'Dave'
}, {
  email => 'dave@perlschool.co.uk'
}]);

 WHERE forename = 'Dave'
OR email = 'dave@perlschool.co.uk'
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Combinations

 Combine hash references and array 
references for more flexibility

 $person_rs->search([{
  forename => 'Dave',
  username => 'dave'
}, {
  email = 'dave@perlschool.co.uk'
}]);
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Many Values for Column

 Use an array reference to test many values 
for a column

 $person_rs->search({
  forename => [ 'Dave', 'David' ]
});

 WHERE forename = 'Dave'
OR forename = 'David'
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Using SQL

 SQL::Abstract supports some SQL options
 $person_rs->search({
  forename => { like => 'Dav%' }
});

 WHERE forename LIKE 'Dav%'
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Using SQL

 More SQL-like options
 $person_rs->search({
  forename => {
    '-in' => [ 'Dave', 'David' ]
  }
});

 WHERE forename IN ('Dave', 'David')
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Using SQL

 More SQL-like options
 $person_rs->search({
  birth_year => {
    '-between' => [ 1970, 1980 ]
  }
});

 WHERE birth_year
BETWEEN 1970 AND 1980
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Extra Search Attributes
 All of our examples have used one 

parameter to search
 $rs->search(\%where_clause)

 Search takes an optional second parameter
 Defines search attributes
 $rs->search(\%where_clause, \%attrs)
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Select Specific Columns
 Default search selects all columns in a table

 Actually all attributes in the class

 Use the columns attribute to change this
 $person_rs->search({
  forename => 'Dave'
}, {
  columns => [ 'me.forename',
               'me.surname' ]
});

 Note table aliases
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Add Columns
 You can invent columns and add them to the 

returned object
 $person_rs->search({

  forename => 'Dave'
}, {
  +columns => {
      namelen => { length => 'me.forename' }
  }
});

 Use get_column() to access this data
 $person->get_column('namelen')
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Ordering Data

 Use search attributes to order the data
 $person_rs->search({
  forename => 'Dave'
}, {
  order => { '-asc' =>
             [ 'me.surname' ] }
});
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Paging
 Select a subset of the data
 $person_rs->search({
  forename => 'Dave',
}, {
  rows => 10,
  page => 2
});

 You probably want to sort that query



9th February 2013

Joining Tables

 Use the join attribute to join to other tables
 $art_rs->search({}, {
  columns => [ 'me.name', 'cds.title' ],
  join => [ 'cds' ]
});

 Join artist table to CD table
 Return artist name and CD title
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Aggregate Functions

 Use SQL aggregate functions like COUNT, 
SUM and AVERAGE

 $person_rs->search({}, {
  columns => [ 'me.forename',
               name_count => {
                 count => 'me.forename'
               } ],
  group_by => [ 'me.forename' ]
});

 Use get_columns() to get the count
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Join and Aggregate

 Combine joins and aggregates
 $art_rs->search({}, {
  columns => [ 'me.name',
               cd_count => {
                 count => 'cds.id'
               } ],
  group_by => [ 'me.forename' ],
  join => [ 'cds' ]
});
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Chaining Resultsets
 We said that search() can return a resultset
 We can call search() again on that resultset 

to further specify the search
 And so on...
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Chaining Resultsets
 my $daves = $person_rs->search({
  forename => 'Dave'
});

my $women => $daves_rs->search({
  sex => 'F'
});

foreach ($women->all) {
  say $_->forename, ' ', $_->surname;
}
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Executing Resultsets
 A resultset is the definition of a query
 The query isn't run until you execute the 

resultset
 By calling all(), first(), next(), etc

 $person_rs->all
 By calling search() in list context

 @daves = $person_rs->search({
  forename => 'Dave',
});



More on Result Classes
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Result Classes
 Result classes are usually generated by 

DBIx::Class::Schema::Loader
 Define columns
 Define relationships
 But we can add our own code to these 

classes
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Derived Columns
 Sometimes it's handy to have a “column” 

that is derived from other columns
 Just add a method
 sub name {
  my $self = shift;

  return $self->forename, ' ',
         $self->surname;
}
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Actions
 Add methods defining actions that your class 

needs to carry out
 sub marry {
  my $self = shift;
  my $spouse = shift;

  $self->spouse($spouse->id);
  $spouse->spouse($self->id);
}
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Column Inflation

 Inflate a column into a more useful class 
when reading from database

 Deflate object into string before saving to 
database

 e.g. Convert datetime column to DateTime 
object
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DateTime Inflation

 This is a standard feature of DBIC
 DBIx::Class::InflateColumn::DateTime
 Load as a component

 __PACKAGE__->load_component(
  'DBIx::Class::InflateColumn::DateTime'
);

 Define column as datetime
 __PACKAGE__->add_columns(
  birth => { datatype => 'datetime' }
);
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DateTime Inflation
 my $person = $person_rs->first;

my $birth = $person->birth;

say ref $birth; # DateTime

say $birth->day_name;

 $person_rs->create({
  name => 'Some Person',
  birth => DateTime->now
});
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DBIC::Schema::Loader

 Use the -o command line option to include 
components in generated classes

 dbicdump -o 
components='[“InflateColumn::DateTime”]' 
...

 Adds the load_components() call to the 
classes
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Manual Inflation

 You can define your own inflation/deflation 
code

 Use the inflate_column() method
 __PACKAGE__->inflate_column(
  'column_name' => {
    inflate_column => sub { ... },
    deflate_column => sub { ... },
  }
);
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Unicode Inflation

 Databases store strings as a series of bytes
 Well-behaved Unicode-aware code converts 

bytes to characters as the string enters the 
program

 And vice versa

 Many DBDs have a flag to do this 
automatically

 Some don't
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Unicode Inflation
 use Encode;
__PACKAGE__->inflate_column(
  'some_text_column' => {
    inflate_column => sub {
      return decode('utf8', $_[0]);
    },
    deflate_column => sub {
      return encode('utf8', $_[0]);
    },
  }
);
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Relationships
 DBIx::Class::Schema::Loader generates 

many kinds of relationships from metadata
 It doesn't recognise many-to-many 

relationships

 Linking tables

 We can add them manually in the result 
class
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Many to Many
 An actor appears in many films
 A film features many actors
 How do you model that relationship?
 Add a linking table

 Appearance

 Two foreign keys
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Many to Many
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Many to Many
 DBIx::Class::Schema::Loader finds the 

standard relationships

 Actor has many Appearances

 Appearances belong to Actor

 Film has many Appearances

 Appearances belong to Film
 We can add a many to many relationship

 In both directions
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Many to Many
 Film::Schema::Result::Actor->many_to_many(
  'films',  # new relationship name
  'appearances', # linking relationship
  'film'    # FK relationship in link table
);

Film::Schema::Result::Film->many_to_many(
  'actors', # new relationship name
  'appearances', # linking relationship
  'actor',  # FK relationship in link table
);
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Without Many to Many

 my $depp = $actor_rs->search({
  name => 'Johnny Depp'
});

foreach ($depp->appearances) {
  say $_->film->title;
}
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With Many to Many

 my $depp = $actor_rs->search({
  name => 'Johnny Depp'
});

foreach ($depp->films) {
  say $_->title;
}
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Editing Result Classes

 Editing result classes is useful
 But result classes are usually generated

 DBIx::Class::Schema::Loader

 How do we regenerate classes?
 Without overwriting our additions
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MD5 Hash

 A generated result class contains an MD5 
hash

 # Created by DBIx::Class::Schema::Loader 
v0.05003 @ 2010-04-04 13:53:54
# DO NOT MODIFY THIS OR ANYTHING ABOVE! 
md5sum:IvAzC9/WLrHifAi0APmuRw

 Add anything below this line
 Code below this line is preserved on 

regeneration
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Resultset Classes

 We've looked a lot at editing result classes
 You can also edit resultset classes
 Often to add new search methods
 But resultset classes don't exist as files
 Need to create them first



9th February 2013

Resultset Class
 package App::Schema::Resultset::Person

use strict;
use warnings;

use base 'DBIx::Class::Resultset';

1;
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Default Search Values

 sub search_men {
  my $self = shift;

  return $self->search({
    sex => 'M'
  });
}
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Default Search Values

 sub search_men {
  my $self = shift;
  my ($cols, $opts) = @_;

  $cols ||= {};
  $opts ||= {};
  $cols->{sex} = 'M';
  return $self->search(
    $cols, $opts
  );
}
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Default Search Options

 sub search_sorted {
  my $self = shift;

  return $self->search({}, {
    order_by => 'name ASC'
  });
}

 Similar changes for full version



Extending DBIC
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Extending DBIC

 DBIC is powerful and flexible
 Most of the time it can be made to do what 

you want
 Sometimes you need to change its default 

behaviour
 Override default methods
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Overriding Methods

 Overriding methods is a standard OO 
technique

 Method in a subclass replaces one in a 
superclass

 Define subclass method with same name
 Subclass method has new behaviour
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Overriding Methods

 Often the subclass behaviour needs to 
happen in addition to the superclass 
behaviour

 Subclass method needs to call the superclass 
method

 Ugly syntax
 $self->SUPER::method()
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Overriding Methods

 sub do_something {
  my $self = shift;

  ...

  $self->SUPER::do_something(@_);

  ...
}
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Class::C3 / mro
 DBIC uses a non-standard method 

resolution technique
 mro

 Method resolution order

 Specifically its Class::C3 implementation
 “better consistency in multiple inheritance 

situations”
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Class::C3 / mro
 All you really need to know
 When overloading DBIC methods, use 

$self->next::method instead of SUPER
 sub do_something {
  my $self = shift;
  ...
  $self->next::method(@_);
  ...
}
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Overriding new()
 Result classes don't include a new method
 That's defined in the DBIx::Class superclass
 We can override it
 sub new {
  my $class = shift;

  # do stuff

  return $self->next::method(@_);
}
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Overriding new()
 Defaults for missing attributes
 sub new {
  my $class = shift;
  my $obj = shift;

  # Set birthday if it's missing
  $obj->{birth} ||= DateTime->now;

  # Superclass method does real work
  return $self->next::method($obj);
}
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Overriding update()
 Add audit information
 sub update {
  my $self = shift;

  # Set audit columns
  $self->upd_time(DateTime->now);
  $self->upd_by($Curr_User);

  # Superclass method does real work
  $self->next::method();
  say $self->name, ' updated';
}
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Overriding delete()
 Don't really delete rows
 sub delete {
  my $self = shift;

  # Set deleted flag
  $self->deleted(1);

  # Don't call superclass method!
  $self->update;
}
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DBIC and Moose
 Moose is the future of OO Perl
 Moose makes OO Perl easier, more 

powerful and more flexible
 Moose supports use alongside non-Moose 

classes
 MooseX::NonMoose

 We can use DBIC with Moose
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Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

# define relationships
...

__PACKAGE__->meta->make_immutable;
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Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

# define relationships
...

__PACKAGE__->meta->make_immutable;
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Using Moose Class

 As far as the user (i.e. the application 
programmer) is concerned there is no 
difference

 The same code will work
 my $artist_rs = $schema->resultset('Artist');

 my $artist = $art_rs->create(\%artist);

 $artist->update;

 $artist_rs->search();
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Using Moose Class

 For the programmer writing the class, life 
gets better

 We now have all of the power of Moose
 Particularly for overriding methods
 Method modifiers
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Method Modifiers

 More flexible and powerful syntax for 
overriding methods

 More control over interaction between 
subclass method and superclass method

 Easier syntax
 No $self->SUPER::something()
 No $self->next::method()
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Overriding new()
 Run subclass method before superclass 

method
 before new  => sub {
  my $class = shift;
  my $obj = shift;

  # Set birthday if it's missing
  $obj->{birth} ||= DateTime->now;

  # Superclass method run
  # automatically
}
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Overriding update()
 Run subclass method around superclass 

method
 around update => sub {

  my $orig = shift;
  my $self = shift;

  # Set audit columns
  $self->upd_time(DateTime->now);
  $self->upd_by($Curr_User);

  # Superclass method does real work
  $self->$orig(@_);
  say $self->name, ' updated';
}
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Overriding delete()
 Run subclass method in place of superclass 

method
 override delete => sub {
  my $self = shift;

  # Set deleted flag
  $self->deleted(1);

  # Don't call superclass method!
  $self->update;
}
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Adding Roles

 Moose roles are pre-packaged features that 
can be added into your class

 Like mixins or interfaces in other OO 
languages

 Added with the keyword “with”
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Role Example
 package App::Schema::Result::SomeTable;

use Moose;
use MooseX::NonMoose;

extends 'DBIx::Class::Core';
with 'Some::Clever::Role';
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DBIC::Schema::Loader

 DBIx::Class::Schema::Loader has built-in 
support for Moose

 use_moose option
 With dbicdump
 $ dbicdump -o use_moose=1 CD::Schema \ 

  dbi:mysql:database=cd root ''

 Creates classes with the Moose lines 
included



Deploying Schemas
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Changing Schemas

 Database schemas change over time
 Tables added
 Columns added
 Column definitions change
 DBIC has tools to manage that
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Don't Repeat Yourself

 We have two definitions of our database 
schema

 DDL

 CREATE TABLE, etc

 DBIC

 Perl code

 Choose one as canonical source
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DDL vs DBIC

 We can create DBIC code from DDL

 DBIx::Class::Schema::Loader

 We can create DDL from DBIC

 $schema->deploy()
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Deploy

 Schema objects have a deploy() method
 Generates DDL

 Using SQL::Translator

 Applies it to connected database

 Can also see the DDL

 deployment_statements()

 create_ddl_dir()
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Schema Versions

 Versions change over time
 Need to cope with that
 Add a version to our schema class
 Set $VERSION
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Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;
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Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;
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create_ddl_dir

 The create_ddl_dir() method is clever
 Given a previous version of a schema
 It can create ALTER TABLE statements
 $schema->create_ddl_dir(
  [ 'MySQL' ], $curr_ver,
  $directory, $preversion
);

 This will be very useful
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Deploying Versions

 DBIC includes a module called 
DBIx::Class::Schema::Versioned

 Upgrades schemas
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DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
  qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);
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DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
  qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);
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Create Upgrade DDL
 use Getopt::Long;
use CD::Schema;

my $preversion, $help;
GetOptions(
  'p|preversion:s'  => \$preversion,
) or die;

my $schema = MyApp::Schema->connect(...);

# continued...
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Create Upgrade DDL
 my $sql_dir = './sql';

 my $version = $schema->schema_version();

 $schema->create_ddl_dir(
  'MySQL', $version, $sql_dir,
  $preversion
);

 Creates all the DDL you need
 Includes versioning tables
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Upgrade DB
 use CD::Schema;
my $schema = CD::Schema->connect(...);

if ($schema->get_db_version()) {
  # Runs all the upgrade SQL
  $schema->upgrade();
} else {
  # Schema is unversioned
  # Installs empty tables
  $schema->deploy();
}
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Better Tool

 DBIC::Schema::Versioned is part of the 
standard DBIC package

 DBIC::DeploymentHandler is a separate 
CPAN package

 More powerful
 More flexible
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DBIC::DeploymentHndlr

 Advantages

 Upgrades and downgrades

 Multiple SQL files in one upgrade

 Use Perl scripts for upgrade

 Disadvantages

 Dependency hell



Replication
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Replication

 Some databases allow multiple copies of the 
same data

 Server software keeps replicants in step
 This can aid performance
 Different clients can talk to different servers
 Data on some replicants can lag
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Types of Replication

 Master-Slave

 One writeable copy of the database

 Many readable replicants

 e.g. MySQL
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Types of Replication

 Multiple Master

 Many writeable copies

 Potential for deadlocks

 e.g. Sybase
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DBIC & Replication

 DBIC has beta support for master/slave 
replication

 Directs all writes to master connection
 Directs all reads to slave connection
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DBIC & Replication

 Set the storage_type attribute on our schema 
object

 my $schema = CD::Schema->connect(...);

$schema->storage_type([
  '::DBI::Replicated',
  { balancer => 'Random' },
]);
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Add Slaves

 Add slave connections
 $schema->storage->connect_replicants(
  [$dsn1, $user, $pass, \%opts],
  [$dsn2, $user, $pass, \%opts],
  [$dsn3, $user, $pass, \%opts],
);
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Use Schema

 Use schema as usual
 Reads are delegated to a random slave
 Writes are delegated to the master
 You can force a read to the master
 $rs->search({ ... },
  { force_pool => 'master' });

 Avoid race conditions



Further Information
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Documentation

 Lots of good DBIC documentation

 perldoc DBIx::Class

 perldoc DBIx::Class::Manual

 DBIx::Class::Manual::SQLHackers

 Separate documentation distribution
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Support

 Web site

 http://www.dbix-class.org/

 Mailing list

 See support page on web site

 IRC channel

 #dbix-class on irc.perl.org
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Books

 Good coverage in The Definitive Guide to 
Catalyst

 Not completely up to date

 DBIC book being written

 Schedule unknown



That's All Folks

• Any Questions?



• Any Questions?
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