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 Perl is not dead
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Your Help Please
 Trying to build a buzz about Perl
 You can help
 Please tell your friends
 Blog
 Twitter
 Facebook
 http://perlschool.co.uk
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Upcoming Courses

 Perl School 5: Object Oriented Programming 
with Perl and Moose

 6th April 2013

 Perl School 6: Database Programming with 
Perl and DBIx::Class

 8th June 2013

 http://perlschool.co.uk/upcoming/
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Admin Stuff

 Tickets
 Facilities
 Lunch
 Slides
 Feedback
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Timings
 10:00 Session 1
 11:15 Break
 11:30 Session 2
 13:00 Lunch
 14:00 Session 3
 15:30 Break
 15:45 Session 4
 17:00 End
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What We Will Cover

 Introduction to relational databases
 Introduction to databases and Perl

 DBI
 ORM

 Schema Classes
 Basic DB operations

 CRUD
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What We Will Cover

 Advanced queries
 Ordering, joining, grouping

 Extending DBIC
 Deploying and updating schemas
 DBIC and Moose
 Further information



Relational Databases
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Relational Databases
 A Relational Model of Data for Large 

Shared Data Banks

 Ted Codd (1970)

 Applying relational calculus to databases
 See also Chris Date

 Database in Depth (2005)

 SQL and Relational Theory (2011)

 Database Design and Relational Theory (2012)
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Relational Concepts

 Relation

 Table

 (Hence “relational”)

 Tuple

 Row

 Attribute

 Column
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Some More Concepts
 Primary key

 Unique identifier for a row within a table

 Foreign key

 Primary key of a table that appears in another 
table

 Used to define relationships between tables

 e.g artist_id in a table containing CDs
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Referential Integrity

 Check that database is in a meaningful state

 No CDs without artist ID

 No artist IDs that don't exist in the artist table

 Constraints that ensure you can't break 
referential integrity

 Don't delete artists that have associated CDs

 Don't insert a CD with a non-existent artist ID
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SQL

 Structured Query Language
 Standard language for talking to databases
 Invented by IBM early 1970s

 SEQUEL

 ISO/ANSI standard
 Many vendor extensions
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DDL & DML

 Two sides of SQL
 Data Definition Language

 Defines tables, etc
 CREATE, DROP, etc

 Data Manipulation Language
 Create, Read, Update, Delete data
 CRUD
 INSERT, SELECT, UPDATE, DELETE



Databases and Perl
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Talking to Databases

 Database vendors supply an API
 Usually a C library
 Defines functions that run SQL against a DB
 All vendors' APIs do the same thing
 All vendors' APIs are completely different
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Ancient History
 Perl 4 had ways to link to external libraries

 Like database APIs

 Static linking only
 Build a separate Perl binary for every 

database

 oraperl, sybperl, etc

 Call API functions from Perl code
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The Middle Ages

 Perl 5 introduced dynamic linking
 Load libraries at compile time
 Oraperl, Sybperl etc became CPAN modules
 use Oraperl;

 Still writing DB-specific code
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Early Modern Era

 DBI.pm
 Standard database interface
 Database driver converts to API functions

 DBD::Oracle, DBD::Sybase, etc
 Code becomes more portable
 (Except for vendor extensions)
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DBI Architecture
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DBI Architecture

 Programmer writes code to DBI spec
 DBD converts code to database API
 DBD converts Perl data structures as 

appropriate
 DBD converts returns data into Perl data 

structures
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Loading DBI

 use DBI;

 No need to load specific DBD library

 Sometimes DBD exports constants that you will 
need
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Connecting to DB

 Communicate with database through a 
“database handle”

 my $dbh = DBI->connect(
  'dbi:mysql:host=foo.com:database=foo',
  $username, $password, \%options
);

 Different DBDs have different options
 'mysql' defines the DBD to load

 DBD::mysql in this case
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Selecting Data

 Select data using a prepare/execute/fetch 
cycle

 my $sql = 'select col1, col2 from some_tab';
my $sth = $dbh->prepare($sql);
$sth->execute;
while (my $row = $sth->fetch) {
  say join ' : ', @$row;
}
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Inserting Data

 Insert data using a similar approach
 my $sql = 'insert into some_table (id, col1)

           values (1, “Foo”)';
my $sth = $dbh->prepare($sql);
$sth->execute; # No fetch required

 Or using do(...) shortcut
 $dbh->do($sql);
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Updating and Deleting

 Update or delete data in exactly the same 
way

 my $sql = 'update some_table set col1 = “Bar”
           where id = 1';
my $sth = $dbh->prepare($sql);
$sth->execute;

 Or
 $dbh->do('delete from some_table

          where id = 1');
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DBI Advantages

 Standard API for interacting with databases
 Programmer no longer needs to understand 

vendor APIs
 Except the DBD author

 Increased programmer productivity
 Increased programmer flexibility
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DBI Disadvantages

 Programmers still writing raw SQL
 Which is boring
 And error-prone

 DBI returns “dumb” data structures
 Arrays or hashes
 Often need to be converted into objects
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DB Frameworks

 10 years ago people started writing SQL 
generators

 Store a DB row in a hash
 DBI has a fetchrow_hashref() method

 Generate SQL for simple CRUD operations
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Next Steps

 Turn those hashes into objects
 Class knows table name
 Class knows column names
 Class knows primary key
 SQL generation moved into superclass
 All DB tables have an associated class



Object Relational
Mapping
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Relational Database

 Consider database storage structures
 A table defines a type of data that can be 

stored
 A row is a single instance of that type of 

data
 A column is an attribute of that instance
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Object Oriented

 Consider OO storage structures
 A class defines a type of data that can be 

stored
 An object is a single instance of that type of 

data
 An attribute is an attribute of that instance
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ORM

 Database concepts and OO concepts map 
well onto each other

 A database table is a lot like an OO class
 A database row is a lot like an OO object
 A database column is a lot like an OO 

attribute
 We can use this to make our lives easier
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ORM Principles

 A Object Relational Mapper converts 
between database data and objects

 In both directions
 Select data from the database and get an 

object back
 Change that object and update the database 

automatically
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Replacing SQL

 Instead of
 SELECT *
FROM   my_table
WHERE  my_id = 10

 and then dealing with the 
prepare/execute/fetch code
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Replacing SQL

 We can write
 use My::Object;

# warning! not a real orm
my $obj = My::Object->retrieve(10)

 Or something similar
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Perl ORM Options

 Plenty of choices on CPAN
 Fey::ORM
 Rose::DB
 Class::DBI
 DBIx::Class

 The current favourite



DBIx::Class
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DBIx::Class

 Standing on the shoulders of giants
 Learning from problems in Class::DBI
 More flexible
 More powerful
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DBIx::Class Example

 Modeling a CD collection
 Three tables
 artist (id, name)
 cd (id, artist_id, title, year)
 track (id, cd_id, title, sequence)



Defining Classes
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DBIC Classes

 Two mandatory types of class
 One schema class

 CD::Schema
 One result class for each table

 CD::Schema::Result::Artist
 CD::Schema::Result::CD
 CD::Schema::Result::Track
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Schema Class

 Define schema class
 CD/Schema.pm
 package CD::Schema;
use strict;
use warnings;
use base qw/DBIx::Class::Schema/;

__PACKAGE__->load_namespaces();

1;
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Result Classes
 Need one result class for every table
 Needs to know

 The table name

 The column names

 The primary key

 Relationships to other tables
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Result Classes
 CD/Schema/Result/Artist.pm
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns( # simple option
  qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
    'cds', 'CD::Schema::Result::CD',
    'artist_id'
);
1;
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Result Classes
 CD/Schema/Result/CD.pm
 package CD::Schema::Result::CD;

use base qw/DBIx::Class::Core/;

__PACKAGE__->table('cd');
__PACKAGE__->add_columns(
  qw/ id artist_id title year /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
  'artist', 'CD::Schema::Result::Artist',
  'artist_id'
);
__PACKAGE__->has_many(
  'tracks', 'CD::Schema::Result::Track', 'cd_id'
);
1;
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Result Classes
 CD/Schema/Result/Track.pm
 package CD::Schema::Result::Track;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('track');
__PACKAGE__->add_columns(
  qw/ id cd_id title sequence /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
  'cd', 'CD::Schema::Result::CD', 'cd_id'
);

1;
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Defining Columns
 At a minimum you must define column 

names
 But you can give more information
 __PACKAGE__->add_columns(
  id => {
    data_type => 'integer',
    is_auto_increment => 1,
  },
  name => {
    data_type => 'varchar',
    size => 255,
  }
);
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Defining Relationships

 We have seen has_many and belongs_to
 Both ends of a many-to-one relationship
 Most common type of relationship
 Artists to CDs
 CDs to tracks
 Manager to employees
 Invoice to invoice lines
 Simple foreign key relationship
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Other Relationships

 has_one
 Only one child record
 Person has one home address

 might_have
 Optional has_one relationship

 Affects the SQL that is generated
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Don't Repeat Yourself

 The Pragmatic Programmer says “Don't 
repeat yourself”

 Only one source for every piece of 
information

 We are breaking this rule
 We have repeated data



9th February 2013 55

Repeated Information

 CREATE TABLE artist (
  artistid INTEGER PRIMARY KEY,
  name     TEXT NOT NULL 
);
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Repeated Information
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns( # simple option
  qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
    'cds', 'CD::Schema::Result::CD',
    'artist_id'
);
1;
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Don't Repeat Yourself

 Information is repeated
 Columns and relationships defined in the 

database schema
 Columns and relationships defined in class 

definitions
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Don't Repeat Yourself

 Need to define one canonical representation 
for data definitions

 Generate the other one
 Let's choose the DDL
 Generate the classes from the DDL
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Database Metadata

 Some people don't put enough metadata in 
their databases

 Just tables and columns
 No relationships. No constraints
 You may as well make each column 

VARCHAR(255)
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Database Metadata

 Describe your data in your database
 It's what your database is for
 It's what your database does best
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DBIC::Schema::Loader

 DBIx::Class::Schema::Loader
 Separate distribution on CPAN

 Creates classes by querying your database 
metadata

 No more repeated data
 We are now DRY
 Schema definitions in one place
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dbicdump

 DBIC::Schema::Loader comes with a 
command line program called dbicdump

 $ dbicdump CD::Schema dbi:mysql:database=cd root ''
Dumping manual schema for CD::Schema to 
directory . ...
Schema dump completed.

 $ find CD
CD
CD/Schema
CD/Schema/Result
CD/Schema/Result/Cd.pm
CD/Schema/Result/Artist.pm
CD/Schema/Result/Track.pm
CD/Schema.pm



Simple CRUD
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Loading DBIC Libraries

 Load the main schema class
 use CD::Schema;

 The load_namespaces call takes care of 
loading the rest of the classes
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Connecting to DB

 The DBIC equivalent of a database handle is 
called a schema

 Get one by calling the connect method
 my $sch = CD::Schema->connect(
  'dbi:mysql:database=cd', $user, $pass
);

 Connection parameters passed through to 
DBI



9th February 2013

Inserting Data
 Interact with tables using a resultset object
 The schema class has a resultset method that 

will give you a resultset object
 my $art_rs = $sch->resultset('Artist');
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Inserting Artists

 Use the create method on a resultset to insert 
data into a table

 my @artists = ('Elbow',
               'Arcade Fire');

foreach (@artists) {
  $art_rs->create({ name => $_ });
}

 Pass a hash reference containing data
 Handles auto-increment columns
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Inserting Artists
 The create method returns a new artist 

object

 Actually a CD::Schema::Result::Artist
 my $bowie = $art_rs->create({
  name => 'David Bowie'
});

 Result objects have methods for each 
column

 say $bowie->id;
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Inserting Artists

 An alternative is to use the populate() 
method

 my @artists = $art_rs->populate(
  [ 'name' ],
  [ 'Arcade Fire' ],
  [ 'Elbow' ],
);

 Pass one array reference for each row
 First argument is a list of column names
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Insert Related Records

 Easy to insert objects related to existing 
objects

 $bowie->add_to_cds({
  title => 'The Next Day',
  year => 2013
});

 Foreign key added automatically
 add_to_cds method added because of 

relationships



9th February 2013

Reading Data

 Selecting data is also done through a 
resultset object

 We use the search() method
 my ($bowie) = $art_rs->search({
  name => 'David Bowie'
});
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Reading Data

 There's also a find() method
 Use when you know there's only one 

matching row
 For example, using primary key
 my $bowie = $art_rs->find({
  id => 3,
});

 my $bowie = $art_rs->find(3);
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Searching Relationships

 Defining relationships allows us to move 
from object to object easily

 my $cd_rs = $sch->resultset('CD');
my ($cd) = $cd_rs->search({
  title => 'The Seldom Seen Kid'
});
say $cd->artist->name; # Elbow

 The artist() method returns the associated 
artist object
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Searching Relationships

 This works the other way too

 my ($artist) = $art_rs->search({
                 name => 'Elbow',
               });

foreach ($artist->cds) {
  say $_->title;
}

 The cds() method returns the associated CD 
objects
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What Search Returns

 The search() method returns different things 
in different contexts

 In list context it returns a list of result 
objects that it has found

 In scalar context it returns another resultset
 That only contains the matching result objects
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What Search Returns
 my $artist = $art_rs->search({
  name => 'Elbow';
});

 $artist is a resultset object
 my ($artist) = $art_rs->search({
  name => 'Elbow';
});

 $artist is a result object
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Taming Search

 To get all of the result objects from a 
resultset call its all() method

 my $artist = $art_rs->search({
  name => 'Elbow';
})->all;

 $artist is a result object
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Taming Search

 To get always get a resultset, use search_rs() 
instead of search()

 my ($artist) = $art_rs->search_rs({
  name => 'Elbow';
});

 $artist is a resultset object
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Updating Data

 Once you have a result object you can 
change any of its attributes

 $bowie->name('Thin White Duke');

 Use the update() method to save it to the 
database

 $bowie->update();
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Updating Data

 You can also call update() on a resultset
 my $davids = $art_rs->search({
  name => { like => 'David %' },
});

$davids->update({
  name => 'Dave',
});
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Deleting Data

 Deleting works a lot like updating
 Delete a single record
 my ($britney) = $art_rs->search({
  name => 'Britney Spears'
});

$britney->delete;
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Deleting Data

 You can also delete a resultset
 my $cliffs = $art_rs->search({
  name => { like => 'Cliff %' }
});

$cliffs->delete;
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Cascading Deletes

 What if any of the artists have CDs in the 
database?

 They get deleted too
 Referential integrity
 Prevent this by changing relationship 

definition
 __PACKAGE__->has_many(

  'cds', 'CD::Schema::Result::CD', 'artistid',
  { cascade_delete => 0 },
);
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Insert Multiple Records

 Create can be used to insert many rows
 $art_rs->create({
  name => 'Arcade Fire',
  cds => [{
    title => 'The Suburbs'
  },
  {
    title => 'Funeral'
  }]
});
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Find or Insert
 Insert an object or return an existing one
 my $killers = $art_rs->find_or_create({
  name => 'The Killers'
});

 Note: Need a unique index on one of the 
search columns
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Update or Create
 Update an existing object or create a new 

one
 my $killers = $art_rs->update_or_create({
  name => 'The Killers'
});

 Note: Need a unique index on one of the 
search columns
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Transactions

 Transactions protect the referential integrity 
of your data

 Chunk of work that must all happen
 Temporary workspace for DB changes
 Commit or rollback at the end
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Transactions & DBIC

 Schema object has a txn_do() method
 Takes a code reference as a parameter
 Adds BEGIN and COMMIT (or 

ROLLBACK) around code
 Transactions can include Perl code
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Transactions & DBIC
 $schema->txn_do( sub {
  my $obj = $rs->create(\%some_obj);
  $obj->add_to_children(\%some_child);

});



Advanced Searches
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Advanced Searches
 search() can be used for more complex 

searchs
 See SQL::Abstract documentation for full 

details
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AND

 Use a hash reference to combine conditions 
using AND

 $person_rs->search({
  forename => 'Dave',
  email => 'dave@perlschool.co.uk'
});

 WHERE forename = 'Dave'
AND email = 'dave@perlschool.co.uk'
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OR

 Use an array reference to combine 
conditions using OR

 $person_rs->search([{
  forename => 'Dave'
}, {
  email => 'dave@perlschool.co.uk'
}]);

 WHERE forename = 'Dave'
OR email = 'dave@perlschool.co.uk'
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Combinations

 Combine hash references and array 
references for more flexibility

 $person_rs->search([{
  forename => 'Dave',
  username => 'dave'
}, {
  email = 'dave@perlschool.co.uk'
}]);
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Many Values for Column

 Use an array reference to test many values 
for a column

 $person_rs->search({
  forename => [ 'Dave', 'David' ]
});

 WHERE forename = 'Dave'
OR forename = 'David'
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Using SQL

 SQL::Abstract supports some SQL options
 $person_rs->search({
  forename => { like => 'Dav%' }
});

 WHERE forename LIKE 'Dav%'
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Using SQL

 More SQL-like options
 $person_rs->search({
  forename => {
    '-in' => [ 'Dave', 'David' ]
  }
});

 WHERE forename IN ('Dave', 'David')
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Using SQL

 More SQL-like options
 $person_rs->search({
  birth_year => {
    '-between' => [ 1970, 1980 ]
  }
});

 WHERE birth_year
BETWEEN 1970 AND 1980
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Extra Search Attributes
 All of our examples have used one 

parameter to search
 $rs->search(\%where_clause)

 Search takes an optional second parameter
 Defines search attributes
 $rs->search(\%where_clause, \%attrs)
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Select Specific Columns
 Default search selects all columns in a table

 Actually all attributes in the class

 Use the columns attribute to change this
 $person_rs->search({
  forename => 'Dave'
}, {
  columns => [ 'me.forename',
               'me.surname' ]
});

 Note table aliases
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Add Columns
 You can invent columns and add them to the 

returned object
 $person_rs->search({

  forename => 'Dave'
}, {
  +columns => {
      namelen => { length => 'me.forename' }
  }
});

 Use get_column() to access this data
 $person->get_column('namelen')
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Ordering Data

 Use search attributes to order the data
 $person_rs->search({
  forename => 'Dave'
}, {
  order => { '-asc' =>
             [ 'me.surname' ] }
});
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Paging
 Select a subset of the data
 $person_rs->search({
  forename => 'Dave',
}, {
  rows => 10,
  page => 2
});

 You probably want to sort that query



9th February 2013

Joining Tables

 Use the join attribute to join to other tables
 $art_rs->search({}, {
  columns => [ 'me.name', 'cds.title' ],
  join => [ 'cds' ]
});

 Join artist table to CD table
 Return artist name and CD title
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Aggregate Functions

 Use SQL aggregate functions like COUNT, 
SUM and AVERAGE

 $person_rs->search({}, {
  columns => [ 'me.forename',
               name_count => {
                 count => 'me.forename'
               } ],
  group_by => [ 'me.forename' ]
});

 Use get_columns() to get the count
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Join and Aggregate

 Combine joins and aggregates
 $art_rs->search({}, {
  columns => [ 'me.name',
               cd_count => {
                 count => 'cds.id'
               } ],
  group_by => [ 'me.forename' ],
  join => [ 'cds' ]
});
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Chaining Resultsets
 We said that search() can return a resultset
 We can call search() again on that resultset 

to further specify the search
 And so on...



9th February 2013

Chaining Resultsets
 my $daves = $person_rs->search({
  forename => 'Dave'
});

my $women => $daves_rs->search({
  sex => 'F'
});

foreach ($women->all) {
  say $_->forename, ' ', $_->surname;
}
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Executing Resultsets
 A resultset is the definition of a query
 The query isn't run until you execute the 

resultset
 By calling all(), first(), next(), etc

 $person_rs->all
 By calling search() in list context

 @daves = $person_rs->search({
  forename => 'Dave',
});



More on Result Classes
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Result Classes
 Result classes are usually generated by 

DBIx::Class::Schema::Loader
 Define columns
 Define relationships
 But we can add our own code to these 

classes
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Derived Columns
 Sometimes it's handy to have a “column” 

that is derived from other columns
 Just add a method
 sub name {
  my $self = shift;

  return $self->forename, ' ',
         $self->surname;
}
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Actions
 Add methods defining actions that your class 

needs to carry out
 sub marry {
  my $self = shift;
  my $spouse = shift;

  $self->spouse($spouse->id);
  $spouse->spouse($self->id);
}
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Column Inflation

 Inflate a column into a more useful class 
when reading from database

 Deflate object into string before saving to 
database

 e.g. Convert datetime column to DateTime 
object
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DateTime Inflation

 This is a standard feature of DBIC
 DBIx::Class::InflateColumn::DateTime
 Load as a component

 __PACKAGE__->load_component(
  'DBIx::Class::InflateColumn::DateTime'
);

 Define column as datetime
 __PACKAGE__->add_columns(
  birth => { datatype => 'datetime' }
);
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DateTime Inflation
 my $person = $person_rs->first;

my $birth = $person->birth;

say ref $birth; # DateTime

say $birth->day_name;

 $person_rs->create({
  name => 'Some Person',
  birth => DateTime->now
});
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DBIC::Schema::Loader

 Use the -o command line option to include 
components in generated classes

 dbicdump -o 
components='[“InflateColumn::DateTime”]' 
...

 Adds the load_components() call to the 
classes
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Manual Inflation

 You can define your own inflation/deflation 
code

 Use the inflate_column() method
 __PACKAGE__->inflate_column(
  'column_name' => {
    inflate_column => sub { ... },
    deflate_column => sub { ... },
  }
);
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Unicode Inflation

 Databases store strings as a series of bytes
 Well-behaved Unicode-aware code converts 

bytes to characters as the string enters the 
program

 And vice versa

 Many DBDs have a flag to do this 
automatically

 Some don't
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Unicode Inflation
 use Encode;
__PACKAGE__->inflate_column(
  'some_text_column' => {
    inflate_column => sub {
      return decode('utf8', $_[0]);
    },
    deflate_column => sub {
      return encode('utf8', $_[0]);
    },
  }
);
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Relationships
 DBIx::Class::Schema::Loader generates 

many kinds of relationships from metadata
 It doesn't recognise many-to-many 

relationships

 Linking tables

 We can add them manually in the result 
class
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Many to Many
 An actor appears in many films
 A film features many actors
 How do you model that relationship?
 Add a linking table

 Appearance

 Two foreign keys
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Many to Many
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Many to Many
 DBIx::Class::Schema::Loader finds the 

standard relationships

 Actor has many Appearances

 Appearances belong to Actor

 Film has many Appearances

 Appearances belong to Film
 We can add a many to many relationship

 In both directions
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Many to Many
 Film::Schema::Result::Actor->many_to_many(
  'films',  # new relationship name
  'appearances', # linking relationship
  'film'    # FK relationship in link table
);

Film::Schema::Result::Film->many_to_many(
  'actors', # new relationship name
  'appearances', # linking relationship
  'actor',  # FK relationship in link table
);
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Without Many to Many

 my $depp = $actor_rs->search({
  name => 'Johnny Depp'
});

foreach ($depp->appearances) {
  say $_->film->title;
}
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With Many to Many

 my $depp = $actor_rs->search({
  name => 'Johnny Depp'
});

foreach ($depp->films) {
  say $_->title;
}
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Editing Result Classes

 Editing result classes is useful
 But result classes are usually generated

 DBIx::Class::Schema::Loader

 How do we regenerate classes?
 Without overwriting our additions
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MD5 Hash

 A generated result class contains an MD5 
hash

 # Created by DBIx::Class::Schema::Loader 
v0.05003 @ 2010-04-04 13:53:54
# DO NOT MODIFY THIS OR ANYTHING ABOVE! 
md5sum:IvAzC9/WLrHifAi0APmuRw

 Add anything below this line
 Code below this line is preserved on 

regeneration
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Resultset Classes

 We've looked a lot at editing result classes
 You can also edit resultset classes
 Often to add new search methods
 But resultset classes don't exist as files
 Need to create them first
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Resultset Class
 package App::Schema::Resultset::Person

use strict;
use warnings;

use base 'DBIx::Class::Resultset';

1;
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Default Search Values

 sub search_men {
  my $self = shift;

  return $self->search({
    sex => 'M'
  });
}
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Default Search Values

 sub search_men {
  my $self = shift;
  my ($cols, $opts) = @_;

  $cols ||= {};
  $opts ||= {};
  $cols->{sex} = 'M';
  return $self->search(
    $cols, $opts
  );
}
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Default Search Options

 sub search_sorted {
  my $self = shift;

  return $self->search({}, {
    order_by => 'name ASC'
  });
}

 Similar changes for full version



Extending DBIC
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Extending DBIC

 DBIC is powerful and flexible
 Most of the time it can be made to do what 

you want
 Sometimes you need to change its default 

behaviour
 Override default methods
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Overriding Methods

 Overriding methods is a standard OO 
technique

 Method in a subclass replaces one in a 
superclass

 Define subclass method with same name
 Subclass method has new behaviour
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Overriding Methods

 Often the subclass behaviour needs to 
happen in addition to the superclass 
behaviour

 Subclass method needs to call the superclass 
method

 Ugly syntax
 $self->SUPER::method()
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Overriding Methods

 sub do_something {
  my $self = shift;

  ...

  $self->SUPER::do_something(@_);

  ...
}
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Class::C3 / mro
 DBIC uses a non-standard method 

resolution technique
 mro

 Method resolution order

 Specifically its Class::C3 implementation
 “better consistency in multiple inheritance 

situations”
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Class::C3 / mro
 All you really need to know
 When overloading DBIC methods, use 

$self->next::method instead of SUPER
 sub do_something {
  my $self = shift;
  ...
  $self->next::method(@_);
  ...
}
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Overriding new()
 Result classes don't include a new method
 That's defined in the DBIx::Class superclass
 We can override it
 sub new {
  my $class = shift;

  # do stuff

  return $self->next::method(@_);
}



9th February 2013 143

Overriding new()
 Defaults for missing attributes
 sub new {
  my $class = shift;
  my $obj = shift;

  # Set birthday if it's missing
  $obj->{birth} ||= DateTime->now;

  # Superclass method does real work
  return $self->next::method($obj);
}
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Overriding update()
 Add audit information
 sub update {
  my $self = shift;

  # Set audit columns
  $self->upd_time(DateTime->now);
  $self->upd_by($Curr_User);

  # Superclass method does real work
  $self->next::method();
  say $self->name, ' updated';
}
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Overriding delete()
 Don't really delete rows
 sub delete {
  my $self = shift;

  # Set deleted flag
  $self->deleted(1);

  # Don't call superclass method!
  $self->update;
}
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DBIC and Moose
 Moose is the future of OO Perl
 Moose makes OO Perl easier, more 

powerful and more flexible
 Moose supports use alongside non-Moose 

classes
 MooseX::NonMoose

 We can use DBIC with Moose
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Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

# define relationships
...

__PACKAGE__->meta->make_immutable;
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Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

# define relationships
...

__PACKAGE__->meta->make_immutable;
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Using Moose Class

 As far as the user (i.e. the application 
programmer) is concerned there is no 
difference

 The same code will work
 my $artist_rs = $schema->resultset('Artist');

 my $artist = $art_rs->create(\%artist);

 $artist->update;

 $artist_rs->search();
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Using Moose Class

 For the programmer writing the class, life 
gets better

 We now have all of the power of Moose
 Particularly for overriding methods
 Method modifiers
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Method Modifiers

 More flexible and powerful syntax for 
overriding methods

 More control over interaction between 
subclass method and superclass method

 Easier syntax
 No $self->SUPER::something()
 No $self->next::method()
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Overriding new()
 Run subclass method before superclass 

method
 before new  => sub {
  my $class = shift;
  my $obj = shift;

  # Set birthday if it's missing
  $obj->{birth} ||= DateTime->now;

  # Superclass method run
  # automatically
}
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Overriding update()
 Run subclass method around superclass 

method
 around update => sub {

  my $orig = shift;
  my $self = shift;

  # Set audit columns
  $self->upd_time(DateTime->now);
  $self->upd_by($Curr_User);

  # Superclass method does real work
  $self->$orig(@_);
  say $self->name, ' updated';
}
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Overriding delete()
 Run subclass method in place of superclass 

method
 override delete => sub {
  my $self = shift;

  # Set deleted flag
  $self->deleted(1);

  # Don't call superclass method!
  $self->update;
}
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Adding Roles

 Moose roles are pre-packaged features that 
can be added into your class

 Like mixins or interfaces in other OO 
languages

 Added with the keyword “with”
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Role Example
 package App::Schema::Result::SomeTable;

use Moose;
use MooseX::NonMoose;

extends 'DBIx::Class::Core';
with 'Some::Clever::Role';
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DBIC::Schema::Loader

 DBIx::Class::Schema::Loader has built-in 
support for Moose

 use_moose option
 With dbicdump
 $ dbicdump -o use_moose=1 CD::Schema \ 

  dbi:mysql:database=cd root ''

 Creates classes with the Moose lines 
included



Deploying Schemas
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Changing Schemas

 Database schemas change over time
 Tables added
 Columns added
 Column definitions change
 DBIC has tools to manage that



9th February 2013

Don't Repeat Yourself

 We have two definitions of our database 
schema

 DDL

 CREATE TABLE, etc

 DBIC

 Perl code

 Choose one as canonical source
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DDL vs DBIC

 We can create DBIC code from DDL

 DBIx::Class::Schema::Loader

 We can create DDL from DBIC

 $schema->deploy()
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Deploy

 Schema objects have a deploy() method
 Generates DDL

 Using SQL::Translator

 Applies it to connected database

 Can also see the DDL

 deployment_statements()

 create_ddl_dir()
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Schema Versions

 Versions change over time
 Need to cope with that
 Add a version to our schema class
 Set $VERSION
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Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;



9th February 2013

Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;
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create_ddl_dir

 The create_ddl_dir() method is clever
 Given a previous version of a schema
 It can create ALTER TABLE statements
 $schema->create_ddl_dir(
  [ 'MySQL' ], $curr_ver,
  $directory, $preversion
);

 This will be very useful
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Deploying Versions

 DBIC includes a module called 
DBIx::Class::Schema::Versioned

 Upgrades schemas
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DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
  qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);
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DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
  qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);
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Create Upgrade DDL
 use Getopt::Long;
use CD::Schema;

my $preversion, $help;
GetOptions(
  'p|preversion:s'  => \$preversion,
) or die;

my $schema = MyApp::Schema->connect(...);

# continued...



9th February 2013

Create Upgrade DDL
 my $sql_dir = './sql';

 my $version = $schema->schema_version();

 $schema->create_ddl_dir(
  'MySQL', $version, $sql_dir,
  $preversion
);

 Creates all the DDL you need
 Includes versioning tables
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Upgrade DB
 use CD::Schema;
my $schema = CD::Schema->connect(...);

if ($schema->get_db_version()) {
  # Runs all the upgrade SQL
  $schema->upgrade();
} else {
  # Schema is unversioned
  # Installs empty tables
  $schema->deploy();
}
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Better Tool

 DBIC::Schema::Versioned is part of the 
standard DBIC package

 DBIC::DeploymentHandler is a separate 
CPAN package

 More powerful
 More flexible



9th February 2013

DBIC::DeploymentHndlr

 Advantages

 Upgrades and downgrades

 Multiple SQL files in one upgrade

 Use Perl scripts for upgrade

 Disadvantages

 Dependency hell



Replication
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Replication

 Some databases allow multiple copies of the 
same data

 Server software keeps replicants in step
 This can aid performance
 Different clients can talk to different servers
 Data on some replicants can lag
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Types of Replication

 Master-Slave

 One writeable copy of the database

 Many readable replicants

 e.g. MySQL
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Types of Replication

 Multiple Master

 Many writeable copies

 Potential for deadlocks

 e.g. Sybase
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DBIC & Replication

 DBIC has beta support for master/slave 
replication

 Directs all writes to master connection
 Directs all reads to slave connection
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DBIC & Replication

 Set the storage_type attribute on our schema 
object

 my $schema = CD::Schema->connect(...);

$schema->storage_type([
  '::DBI::Replicated',
  { balancer => 'Random' },
]);
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Add Slaves

 Add slave connections
 $schema->storage->connect_replicants(
  [$dsn1, $user, $pass, \%opts],
  [$dsn2, $user, $pass, \%opts],
  [$dsn3, $user, $pass, \%opts],
);
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Use Schema

 Use schema as usual
 Reads are delegated to a random slave
 Writes are delegated to the master
 You can force a read to the master
 $rs->search({ ... },
  { force_pool => 'master' });

 Avoid race conditions



Further Information
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Documentation

 Lots of good DBIC documentation

 perldoc DBIx::Class

 perldoc DBIx::Class::Manual

 DBIx::Class::Manual::SQLHackers

 Separate documentation distribution
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Support

 Web site

 http://www.dbix-class.org/

 Mailing list

 See support page on web site

 IRC channel

 #dbix-class on irc.perl.org
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Books

 Good coverage in The Definitive Guide to 
Catalyst

 Not completely up to date

 DBIC book being written

 Schedule unknown



That's All Folks

• Any Questions?



• Any Questions?
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