
Database Programming
with Perl and
DBIx::Class

Dave Cross
dave@perlschool.co.uk

9th February 2013

Perl School
 Low cost Perl training
 Training at all levels
 Trying to build a buzz about Perl
 Perl is not dead
 Perl is Modern

9th February 2013

Xkcd Says

9th February 2013

Your Help Please
 Trying to build a buzz about Perl
 You can help
 Please tell your friends
 Blog
 Twitter
 Facebook
 http://perlschool.co.uk

9th February 2013

Upcoming Courses

 Perl School 5: Object Oriented Programming
with Perl and Moose

 6th April 2013

 Perl School 6: Database Programming with
Perl and DBIx::Class

 8th June 2013

 http://perlschool.co.uk/upcoming/

9th February 2013

Admin Stuff

 Tickets
 Facilities
 Lunch
 Slides
 Feedback

9th February 2013

Timings
 10:00 Session 1
 11:15 Break
 11:30 Session 2
 13:00 Lunch
 14:00 Session 3
 15:30 Break
 15:45 Session 4
 17:00 End

9th February 2013 8

What We Will Cover

 Introduction to relational databases
 Introduction to databases and Perl

 DBI
 ORM

 Schema Classes
 Basic DB operations

 CRUD

9th February 2013 9

What We Will Cover

 Advanced queries
 Ordering, joining, grouping

 Extending DBIC
 Deploying and updating schemas
 DBIC and Moose
 Further information

Relational Databases

9th February 2013 11

Relational Databases
 A Relational Model of Data for Large

Shared Data Banks

 Ted Codd (1970)

 Applying relational calculus to databases
 See also Chris Date

 Database in Depth (2005)

 SQL and Relational Theory (2011)

 Database Design and Relational Theory (2012)

9th February 2013 12

Relational Concepts

 Relation

 Table

 (Hence “relational”)

 Tuple

 Row

 Attribute

 Column

9th February 2013 13

Some More Concepts
 Primary key

 Unique identifier for a row within a table

 Foreign key

 Primary key of a table that appears in another
table

 Used to define relationships between tables

 e.g artist_id in a table containing CDs

9th February 2013 14

Referential Integrity

 Check that database is in a meaningful state

 No CDs without artist ID

 No artist IDs that don't exist in the artist table

 Constraints that ensure you can't break
referential integrity

 Don't delete artists that have associated CDs

 Don't insert a CD with a non-existent artist ID

9th February 2013 15

SQL

 Structured Query Language
 Standard language for talking to databases
 Invented by IBM early 1970s

 SEQUEL

 ISO/ANSI standard
 Many vendor extensions

9th February 2013 16

DDL & DML

 Two sides of SQL
 Data Definition Language

 Defines tables, etc
 CREATE, DROP, etc

 Data Manipulation Language
 Create, Read, Update, Delete data
 CRUD
 INSERT, SELECT, UPDATE, DELETE

Databases and Perl

9th February 2013 18

Talking to Databases

 Database vendors supply an API
 Usually a C library
 Defines functions that run SQL against a DB
 All vendors' APIs do the same thing
 All vendors' APIs are completely different

9th February 2013 19

Ancient History
 Perl 4 had ways to link to external libraries

 Like database APIs

 Static linking only
 Build a separate Perl binary for every

database

 oraperl, sybperl, etc

 Call API functions from Perl code

9th February 2013 20

The Middle Ages

 Perl 5 introduced dynamic linking
 Load libraries at compile time
 Oraperl, Sybperl etc became CPAN modules
 use Oraperl;

 Still writing DB-specific code

9th February 2013 21

Early Modern Era

 DBI.pm
 Standard database interface
 Database driver converts to API functions

 DBD::Oracle, DBD::Sybase, etc
 Code becomes more portable
 (Except for vendor extensions)

9th February 2013 22

DBI Architecture

9th February 2013 23

DBI Architecture

 Programmer writes code to DBI spec
 DBD converts code to database API
 DBD converts Perl data structures as

appropriate
 DBD converts returns data into Perl data

structures

9th February 2013 24

Loading DBI

 use DBI;

 No need to load specific DBD library

 Sometimes DBD exports constants that you will
need

9th February 2013 25

Connecting to DB

 Communicate with database through a
“database handle”

 my $dbh = DBI->connect(
 'dbi:mysql:host=foo.com:database=foo',
 $username, $password, \%options
);

 Different DBDs have different options
 'mysql' defines the DBD to load

 DBD::mysql in this case

9th February 2013 26

Selecting Data

 Select data using a prepare/execute/fetch
cycle

 my $sql = 'select col1, col2 from some_tab';
my $sth = $dbh->prepare($sql);
$sth->execute;
while (my $row = $sth->fetch) {
 say join ' : ', @$row;
}

9th February 2013 27

Inserting Data

 Insert data using a similar approach
 my $sql = 'insert into some_table (id, col1)

 values (1, “Foo”)';
my $sth = $dbh->prepare($sql);
$sth->execute; # No fetch required

 Or using do(...) shortcut
 $dbh->do($sql);

9th February 2013 28

Updating and Deleting

 Update or delete data in exactly the same
way

 my $sql = 'update some_table set col1 = “Bar”
 where id = 1';
my $sth = $dbh->prepare($sql);
$sth->execute;

 Or
 $dbh->do('delete from some_table

 where id = 1');

9th February 2013 29

DBI Advantages

 Standard API for interacting with databases
 Programmer no longer needs to understand

vendor APIs
 Except the DBD author

 Increased programmer productivity
 Increased programmer flexibility

9th February 2013 30

DBI Disadvantages

 Programmers still writing raw SQL
 Which is boring
 And error-prone

 DBI returns “dumb” data structures
 Arrays or hashes
 Often need to be converted into objects

9th February 2013 31

DB Frameworks

 10 years ago people started writing SQL
generators

 Store a DB row in a hash
 DBI has a fetchrow_hashref() method

 Generate SQL for simple CRUD operations

9th February 2013 32

Next Steps

 Turn those hashes into objects
 Class knows table name
 Class knows column names
 Class knows primary key
 SQL generation moved into superclass
 All DB tables have an associated class

Object Relational
Mapping

9th February 2013 34

Relational Database

 Consider database storage structures
 A table defines a type of data that can be

stored
 A row is a single instance of that type of

data
 A column is an attribute of that instance

9th February 2013 35

Object Oriented

 Consider OO storage structures
 A class defines a type of data that can be

stored
 An object is a single instance of that type of

data
 An attribute is an attribute of that instance

9th February 2013 36

ORM

 Database concepts and OO concepts map
well onto each other

 A database table is a lot like an OO class
 A database row is a lot like an OO object
 A database column is a lot like an OO

attribute
 We can use this to make our lives easier

9th February 2013 37

ORM Principles

 A Object Relational Mapper converts
between database data and objects

 In both directions
 Select data from the database and get an

object back
 Change that object and update the database

automatically

9th February 2013 38

Replacing SQL

 Instead of
 SELECT *
FROM my_table
WHERE my_id = 10

 and then dealing with the
prepare/execute/fetch code

9th February 2013 39

Replacing SQL

 We can write
 use My::Object;

warning! not a real orm
my $obj = My::Object->retrieve(10)

 Or something similar

9th February 2013 40

Perl ORM Options

 Plenty of choices on CPAN
 Fey::ORM
 Rose::DB
 Class::DBI
 DBIx::Class

 The current favourite

DBIx::Class

9th February 2013 42

DBIx::Class

 Standing on the shoulders of giants
 Learning from problems in Class::DBI
 More flexible
 More powerful

9th February 2013 43

DBIx::Class Example

 Modeling a CD collection
 Three tables
 artist (id, name)
 cd (id, artist_id, title, year)
 track (id, cd_id, title, sequence)

Defining Classes

9th February 2013 45

DBIC Classes

 Two mandatory types of class
 One schema class

 CD::Schema
 One result class for each table

 CD::Schema::Result::Artist
 CD::Schema::Result::CD
 CD::Schema::Result::Track

9th February 2013 46

Schema Class

 Define schema class
 CD/Schema.pm
 package CD::Schema;
use strict;
use warnings;
use base qw/DBIx::Class::Schema/;

__PACKAGE__->load_namespaces();

1;

9th February 2013 47

Result Classes
 Need one result class for every table
 Needs to know

 The table name

 The column names

 The primary key

 Relationships to other tables

9th February 2013 48

Result Classes
 CD/Schema/Result/Artist.pm
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(# simple option
 qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
 'cds', 'CD::Schema::Result::CD',
 'artist_id'
);
1;

9th February 2013 49

Result Classes
 CD/Schema/Result/CD.pm
 package CD::Schema::Result::CD;

use base qw/DBIx::Class::Core/;

__PACKAGE__->table('cd');
__PACKAGE__->add_columns(
 qw/ id artist_id title year /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
 'artist', 'CD::Schema::Result::Artist',
 'artist_id'
);
__PACKAGE__->has_many(
 'tracks', 'CD::Schema::Result::Track', 'cd_id'
);
1;

9th February 2013 50

Result Classes
 CD/Schema/Result/Track.pm
 package CD::Schema::Result::Track;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('track');
__PACKAGE__->add_columns(
 qw/ id cd_id title sequence /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->belongs_to(
 'cd', 'CD::Schema::Result::CD', 'cd_id'
);

1;

9th February 2013 51

Defining Columns
 At a minimum you must define column

names
 But you can give more information
 __PACKAGE__->add_columns(
 id => {
 data_type => 'integer',
 is_auto_increment => 1,
 },
 name => {
 data_type => 'varchar',
 size => 255,
 }
);

9th February 2013 52

Defining Relationships

 We have seen has_many and belongs_to
 Both ends of a many-to-one relationship
 Most common type of relationship
 Artists to CDs
 CDs to tracks
 Manager to employees
 Invoice to invoice lines
 Simple foreign key relationship

9th February 2013 53

Other Relationships

 has_one
 Only one child record
 Person has one home address

 might_have
 Optional has_one relationship

 Affects the SQL that is generated

9th February 2013 54

Don't Repeat Yourself

 The Pragmatic Programmer says “Don't
repeat yourself”

 Only one source for every piece of
information

 We are breaking this rule
 We have repeated data

9th February 2013 55

Repeated Information

 CREATE TABLE artist (
 artistid INTEGER PRIMARY KEY,
 name TEXT NOT NULL
);

9th February 2013 56

Repeated Information
 package CD::Schema::Result::Artist;
use base qw/DBIx::Class::Core/;

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(# simple option
 qw/ id name /
);
__PACKAGE__->set_primary_key('id');
__PACKAGE__->has_many(
 'cds', 'CD::Schema::Result::CD',
 'artist_id'
);
1;

9th February 2013 57

Don't Repeat Yourself

 Information is repeated
 Columns and relationships defined in the

database schema
 Columns and relationships defined in class

definitions

9th February 2013 58

Don't Repeat Yourself

 Need to define one canonical representation
for data definitions

 Generate the other one
 Let's choose the DDL
 Generate the classes from the DDL

9th February 2013 59

Database Metadata

 Some people don't put enough metadata in
their databases

 Just tables and columns
 No relationships. No constraints
 You may as well make each column

VARCHAR(255)

9th February 2013 60

Database Metadata

 Describe your data in your database
 It's what your database is for
 It's what your database does best

9th February 2013 61

DBIC::Schema::Loader

 DBIx::Class::Schema::Loader
 Separate distribution on CPAN

 Creates classes by querying your database
metadata

 No more repeated data
 We are now DRY
 Schema definitions in one place

9th February 2013 62

dbicdump

 DBIC::Schema::Loader comes with a
command line program called dbicdump

 $ dbicdump CD::Schema dbi:mysql:database=cd root ''
Dumping manual schema for CD::Schema to
directory
Schema dump completed.

 $ find CD
CD
CD/Schema
CD/Schema/Result
CD/Schema/Result/Cd.pm
CD/Schema/Result/Artist.pm
CD/Schema/Result/Track.pm
CD/Schema.pm

Simple CRUD

9th February 2013

Loading DBIC Libraries

 Load the main schema class
 use CD::Schema;

 The load_namespaces call takes care of
loading the rest of the classes

9th February 2013

Connecting to DB

 The DBIC equivalent of a database handle is
called a schema

 Get one by calling the connect method
 my $sch = CD::Schema->connect(
 'dbi:mysql:database=cd', $user, $pass
);

 Connection parameters passed through to
DBI

9th February 2013

Inserting Data
 Interact with tables using a resultset object
 The schema class has a resultset method that

will give you a resultset object
 my $art_rs = $sch->resultset('Artist');

9th February 2013

Inserting Artists

 Use the create method on a resultset to insert
data into a table

 my @artists = ('Elbow',
 'Arcade Fire');

foreach (@artists) {
 $art_rs->create({ name => $_ });
}

 Pass a hash reference containing data
 Handles auto-increment columns

9th February 2013

Inserting Artists
 The create method returns a new artist

object

 Actually a CD::Schema::Result::Artist
 my $bowie = $art_rs->create({
 name => 'David Bowie'
});

 Result objects have methods for each
column

 say $bowie->id;

9th February 2013

Inserting Artists

 An alternative is to use the populate()
method

 my @artists = $art_rs->populate(
 ['name'],
 ['Arcade Fire'],
 ['Elbow'],
);

 Pass one array reference for each row
 First argument is a list of column names

9th February 2013

Insert Related Records

 Easy to insert objects related to existing
objects

 $bowie->add_to_cds({
 title => 'The Next Day',
 year => 2013
});

 Foreign key added automatically
 add_to_cds method added because of

relationships

9th February 2013

Reading Data

 Selecting data is also done through a
resultset object

 We use the search() method
 my ($bowie) = $art_rs->search({
 name => 'David Bowie'
});

9th February 2013

Reading Data

 There's also a find() method
 Use when you know there's only one

matching row
 For example, using primary key
 my $bowie = $art_rs->find({
 id => 3,
});

 my $bowie = $art_rs->find(3);

9th February 2013

Searching Relationships

 Defining relationships allows us to move
from object to object easily

 my $cd_rs = $sch->resultset('CD');
my ($cd) = $cd_rs->search({
 title => 'The Seldom Seen Kid'
});
say $cd->artist->name; # Elbow

 The artist() method returns the associated
artist object

9th February 2013

Searching Relationships

 This works the other way too

 my ($artist) = $art_rs->search({
 name => 'Elbow',
 });

foreach ($artist->cds) {
 say $_->title;
}

 The cds() method returns the associated CD
objects

9th February 2013 75

What Search Returns

 The search() method returns different things
in different contexts

 In list context it returns a list of result
objects that it has found

 In scalar context it returns another resultset
 That only contains the matching result objects

9th February 2013 76

What Search Returns
 my $artist = $art_rs->search({
 name => 'Elbow';
});

 $artist is a resultset object
 my ($artist) = $art_rs->search({
 name => 'Elbow';
});

 $artist is a result object

9th February 2013 77

Taming Search

 To get all of the result objects from a
resultset call its all() method

 my $artist = $art_rs->search({
 name => 'Elbow';
})->all;

 $artist is a result object

9th February 2013 78

Taming Search

 To get always get a resultset, use search_rs()
instead of search()

 my ($artist) = $art_rs->search_rs({
 name => 'Elbow';
});

 $artist is a resultset object

9th February 2013

Updating Data

 Once you have a result object you can
change any of its attributes

 $bowie->name('Thin White Duke');

 Use the update() method to save it to the
database

 $bowie->update();

9th February 2013

Updating Data

 You can also call update() on a resultset
 my $davids = $art_rs->search({
 name => { like => 'David %' },
});

$davids->update({
 name => 'Dave',
});

9th February 2013

Deleting Data

 Deleting works a lot like updating
 Delete a single record
 my ($britney) = $art_rs->search({
 name => 'Britney Spears'
});

$britney->delete;

9th February 2013

Deleting Data

 You can also delete a resultset
 my $cliffs = $art_rs->search({
 name => { like => 'Cliff %' }
});

$cliffs->delete;

9th February 2013

Cascading Deletes

 What if any of the artists have CDs in the
database?

 They get deleted too
 Referential integrity
 Prevent this by changing relationship

definition
 __PACKAGE__->has_many(

 'cds', 'CD::Schema::Result::CD', 'artistid',
 { cascade_delete => 0 },
);

9th February 2013

Insert Multiple Records

 Create can be used to insert many rows
 $art_rs->create({
 name => 'Arcade Fire',
 cds => [{
 title => 'The Suburbs'
 },
 {
 title => 'Funeral'
 }]
});

9th February 2013

Find or Insert
 Insert an object or return an existing one
 my $killers = $art_rs->find_or_create({
 name => 'The Killers'
});

 Note: Need a unique index on one of the
search columns

9th February 2013

Update or Create
 Update an existing object or create a new

one
 my $killers = $art_rs->update_or_create({
 name => 'The Killers'
});

 Note: Need a unique index on one of the
search columns

9th February 2013

Transactions

 Transactions protect the referential integrity
of your data

 Chunk of work that must all happen
 Temporary workspace for DB changes
 Commit or rollback at the end

9th February 2013

Transactions & DBIC

 Schema object has a txn_do() method
 Takes a code reference as a parameter
 Adds BEGIN and COMMIT (or

ROLLBACK) around code
 Transactions can include Perl code

9th February 2013

Transactions & DBIC
 $schema->txn_do(sub {
 my $obj = $rs->create(\%some_obj);
 $obj->add_to_children(\%some_child);

});

Advanced Searches

9th February 2013

Advanced Searches
 search() can be used for more complex

searchs
 See SQL::Abstract documentation for full

details

9th February 2013

AND

 Use a hash reference to combine conditions
using AND

 $person_rs->search({
 forename => 'Dave',
 email => 'dave@perlschool.co.uk'
});

 WHERE forename = 'Dave'
AND email = 'dave@perlschool.co.uk'

9th February 2013

OR

 Use an array reference to combine
conditions using OR

 $person_rs->search([{
 forename => 'Dave'
}, {
 email => 'dave@perlschool.co.uk'
}]);

 WHERE forename = 'Dave'
OR email = 'dave@perlschool.co.uk'

9th February 2013

Combinations

 Combine hash references and array
references for more flexibility

 $person_rs->search([{
 forename => 'Dave',
 username => 'dave'
}, {
 email = 'dave@perlschool.co.uk'
}]);

9th February 2013

Many Values for Column

 Use an array reference to test many values
for a column

 $person_rs->search({
 forename => ['Dave', 'David']
});

 WHERE forename = 'Dave'
OR forename = 'David'

9th February 2013

Using SQL

 SQL::Abstract supports some SQL options
 $person_rs->search({
 forename => { like => 'Dav%' }
});

 WHERE forename LIKE 'Dav%'

9th February 2013

Using SQL

 More SQL-like options
 $person_rs->search({
 forename => {
 '-in' => ['Dave', 'David']
 }
});

 WHERE forename IN ('Dave', 'David')

9th February 2013

Using SQL

 More SQL-like options
 $person_rs->search({
 birth_year => {
 '-between' => [1970, 1980]
 }
});

 WHERE birth_year
BETWEEN 1970 AND 1980

9th February 2013

Extra Search Attributes
 All of our examples have used one

parameter to search
 $rs->search(\%where_clause)

 Search takes an optional second parameter
 Defines search attributes
 $rs->search(\%where_clause, \%attrs)

9th February 2013

Select Specific Columns
 Default search selects all columns in a table

 Actually all attributes in the class

 Use the columns attribute to change this
 $person_rs->search({
 forename => 'Dave'
}, {
 columns => ['me.forename',
 'me.surname']
});

 Note table aliases

9th February 2013

Add Columns
 You can invent columns and add them to the

returned object
 $person_rs->search({

 forename => 'Dave'
}, {
 +columns => {
 namelen => { length => 'me.forename' }
 }
});

 Use get_column() to access this data
 $person->get_column('namelen')

9th February 2013

Ordering Data

 Use search attributes to order the data
 $person_rs->search({
 forename => 'Dave'
}, {
 order => { '-asc' =>
 ['me.surname'] }
});

9th February 2013

Paging
 Select a subset of the data
 $person_rs->search({
 forename => 'Dave',
}, {
 rows => 10,
 page => 2
});

 You probably want to sort that query

9th February 2013

Joining Tables

 Use the join attribute to join to other tables
 $art_rs->search({}, {
 columns => ['me.name', 'cds.title'],
 join => ['cds']
});

 Join artist table to CD table
 Return artist name and CD title

9th February 2013

Aggregate Functions

 Use SQL aggregate functions like COUNT,
SUM and AVERAGE

 $person_rs->search({}, {
 columns => ['me.forename',
 name_count => {
 count => 'me.forename'
 }],
 group_by => ['me.forename']
});

 Use get_columns() to get the count

9th February 2013

Join and Aggregate

 Combine joins and aggregates
 $art_rs->search({}, {
 columns => ['me.name',
 cd_count => {
 count => 'cds.id'
 }],
 group_by => ['me.forename'],
 join => ['cds']
});

9th February 2013

Chaining Resultsets
 We said that search() can return a resultset
 We can call search() again on that resultset

to further specify the search
 And so on...

9th February 2013

Chaining Resultsets
 my $daves = $person_rs->search({
 forename => 'Dave'
});

my $women => $daves_rs->search({
 sex => 'F'
});

foreach ($women->all) {
 say $_->forename, ' ', $_->surname;
}

9th February 2013

Executing Resultsets
 A resultset is the definition of a query
 The query isn't run until you execute the

resultset
 By calling all(), first(), next(), etc

 $person_rs->all
 By calling search() in list context

 @daves = $person_rs->search({
 forename => 'Dave',
});

More on Result Classes

9th February 2013

Result Classes
 Result classes are usually generated by

DBIx::Class::Schema::Loader
 Define columns
 Define relationships
 But we can add our own code to these

classes

9th February 2013 112

Derived Columns
 Sometimes it's handy to have a “column”

that is derived from other columns
 Just add a method
 sub name {
 my $self = shift;

 return $self->forename, ' ',
 $self->surname;
}

9th February 2013 113

Actions
 Add methods defining actions that your class

needs to carry out
 sub marry {
 my $self = shift;
 my $spouse = shift;

 $self->spouse($spouse->id);
 $spouse->spouse($self->id);
}

9th February 2013 114

Column Inflation

 Inflate a column into a more useful class
when reading from database

 Deflate object into string before saving to
database

 e.g. Convert datetime column to DateTime
object

9th February 2013 115

DateTime Inflation

 This is a standard feature of DBIC
 DBIx::Class::InflateColumn::DateTime
 Load as a component

 __PACKAGE__->load_component(
 'DBIx::Class::InflateColumn::DateTime'
);

 Define column as datetime
 __PACKAGE__->add_columns(
 birth => { datatype => 'datetime' }
);

9th February 2013 116

DateTime Inflation
 my $person = $person_rs->first;

my $birth = $person->birth;

say ref $birth; # DateTime

say $birth->day_name;

 $person_rs->create({
 name => 'Some Person',
 birth => DateTime->now
});

9th February 2013 117

DBIC::Schema::Loader

 Use the -o command line option to include
components in generated classes

 dbicdump -o
components='[“InflateColumn::DateTime”]'
...

 Adds the load_components() call to the
classes

9th February 2013 118

Manual Inflation

 You can define your own inflation/deflation
code

 Use the inflate_column() method
 __PACKAGE__->inflate_column(
 'column_name' => {
 inflate_column => sub { ... },
 deflate_column => sub { ... },
 }
);

9th February 2013 119

Unicode Inflation

 Databases store strings as a series of bytes
 Well-behaved Unicode-aware code converts

bytes to characters as the string enters the
program

 And vice versa

 Many DBDs have a flag to do this
automatically

 Some don't

9th February 2013 120

Unicode Inflation
 use Encode;
__PACKAGE__->inflate_column(
 'some_text_column' => {
 inflate_column => sub {
 return decode('utf8', $_[0]);
 },
 deflate_column => sub {
 return encode('utf8', $_[0]);
 },
 }
);

9th February 2013 121

Relationships
 DBIx::Class::Schema::Loader generates

many kinds of relationships from metadata
 It doesn't recognise many-to-many

relationships

 Linking tables

 We can add them manually in the result
class

9th February 2013 122

Many to Many
 An actor appears in many films
 A film features many actors
 How do you model that relationship?
 Add a linking table

 Appearance

 Two foreign keys

9th February 2013 123

Many to Many

9th February 2013 124

Many to Many
 DBIx::Class::Schema::Loader finds the

standard relationships

 Actor has many Appearances

 Appearances belong to Actor

 Film has many Appearances

 Appearances belong to Film
 We can add a many to many relationship

 In both directions

9th February 2013

Many to Many
 Film::Schema::Result::Actor->many_to_many(
 'films', # new relationship name
 'appearances', # linking relationship
 'film' # FK relationship in link table
);

Film::Schema::Result::Film->many_to_many(
 'actors', # new relationship name
 'appearances', # linking relationship
 'actor', # FK relationship in link table
);

9th February 2013

Without Many to Many

 my $depp = $actor_rs->search({
 name => 'Johnny Depp'
});

foreach ($depp->appearances) {
 say $_->film->title;
}

9th February 2013

With Many to Many

 my $depp = $actor_rs->search({
 name => 'Johnny Depp'
});

foreach ($depp->films) {
 say $_->title;
}

9th February 2013

Editing Result Classes

 Editing result classes is useful
 But result classes are usually generated

 DBIx::Class::Schema::Loader

 How do we regenerate classes?
 Without overwriting our additions

9th February 2013

MD5 Hash

 A generated result class contains an MD5
hash

 # Created by DBIx::Class::Schema::Loader
v0.05003 @ 2010-04-04 13:53:54
DO NOT MODIFY THIS OR ANYTHING ABOVE!
md5sum:IvAzC9/WLrHifAi0APmuRw

 Add anything below this line
 Code below this line is preserved on

regeneration

9th February 2013

Resultset Classes

 We've looked a lot at editing result classes
 You can also edit resultset classes
 Often to add new search methods
 But resultset classes don't exist as files
 Need to create them first

9th February 2013

Resultset Class
 package App::Schema::Resultset::Person

use strict;
use warnings;

use base 'DBIx::Class::Resultset';

1;

9th February 2013

Default Search Values

 sub search_men {
 my $self = shift;

 return $self->search({
 sex => 'M'
 });
}

9th February 2013

Default Search Values

 sub search_men {
 my $self = shift;
 my ($cols, $opts) = @_;

 $cols ||= {};
 $opts ||= {};
 $cols->{sex} = 'M';
 return $self->search(
 $cols, $opts
);
}

9th February 2013

Default Search Options

 sub search_sorted {
 my $self = shift;

 return $self->search({}, {
 order_by => 'name ASC'
 });
}

 Similar changes for full version

Extending DBIC

9th February 2013 136

Extending DBIC

 DBIC is powerful and flexible
 Most of the time it can be made to do what

you want
 Sometimes you need to change its default

behaviour
 Override default methods

9th February 2013 137

Overriding Methods

 Overriding methods is a standard OO
technique

 Method in a subclass replaces one in a
superclass

 Define subclass method with same name
 Subclass method has new behaviour

9th February 2013 138

Overriding Methods

 Often the subclass behaviour needs to
happen in addition to the superclass
behaviour

 Subclass method needs to call the superclass
method

 Ugly syntax
 $self->SUPER::method()

9th February 2013 139

Overriding Methods

 sub do_something {
 my $self = shift;

 ...

 $self->SUPER::do_something(@_);

 ...
}

9th February 2013 140

Class::C3 / mro
 DBIC uses a non-standard method

resolution technique
 mro

 Method resolution order

 Specifically its Class::C3 implementation
 “better consistency in multiple inheritance

situations”

9th February 2013 141

Class::C3 / mro
 All you really need to know
 When overloading DBIC methods, use

$self->next::method instead of SUPER
 sub do_something {
 my $self = shift;
 ...
 $self->next::method(@_);
 ...
}

9th February 2013 142

Overriding new()
 Result classes don't include a new method
 That's defined in the DBIx::Class superclass
 We can override it
 sub new {
 my $class = shift;

 # do stuff

 return $self->next::method(@_);
}

9th February 2013 143

Overriding new()
 Defaults for missing attributes
 sub new {
 my $class = shift;
 my $obj = shift;

 # Set birthday if it's missing
 $obj->{birth} ||= DateTime->now;

 # Superclass method does real work
 return $self->next::method($obj);
}

9th February 2013 144

Overriding update()
 Add audit information
 sub update {
 my $self = shift;

 # Set audit columns
 $self->upd_time(DateTime->now);
 $self->upd_by($Curr_User);

 # Superclass method does real work
 $self->next::method();
 say $self->name, ' updated';
}

9th February 2013 145

Overriding delete()
 Don't really delete rows
 sub delete {
 my $self = shift;

 # Set deleted flag
 $self->deleted(1);

 # Don't call superclass method!
 $self->update;
}

9th February 2013 146

DBIC and Moose
 Moose is the future of OO Perl
 Moose makes OO Perl easier, more

powerful and more flexible
 Moose supports use alongside non-Moose

classes
 MooseX::NonMoose

 We can use DBIC with Moose

9th February 2013 147

Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

define relationships
...

__PACKAGE__->meta->make_immutable;

9th February 2013 148

Write Your Own Classes
 package CD::Schema::Result::Artist;

use Moose;
use MooseX::NonMoose;
extends 'DBIx::Class:Core';

__PACKAGE__->table('artist');
__PACKAGE__->add_columns(...);
__PACKAGE__->set_primary_key(...);

define relationships
...

__PACKAGE__->meta->make_immutable;

9th February 2013 149

Using Moose Class

 As far as the user (i.e. the application
programmer) is concerned there is no
difference

 The same code will work
 my $artist_rs = $schema->resultset('Artist');

 my $artist = $art_rs->create(\%artist);

 $artist->update;

 $artist_rs->search();

9th February 2013 150

Using Moose Class

 For the programmer writing the class, life
gets better

 We now have all of the power of Moose
 Particularly for overriding methods
 Method modifiers

9th February 2013 151

Method Modifiers

 More flexible and powerful syntax for
overriding methods

 More control over interaction between
subclass method and superclass method

 Easier syntax
 No $self->SUPER::something()
 No $self->next::method()

9th February 2013 152

Overriding new()
 Run subclass method before superclass

method
 before new => sub {
 my $class = shift;
 my $obj = shift;

 # Set birthday if it's missing
 $obj->{birth} ||= DateTime->now;

 # Superclass method run
 # automatically
}

9th February 2013 153

Overriding update()
 Run subclass method around superclass

method
 around update => sub {

 my $orig = shift;
 my $self = shift;

 # Set audit columns
 $self->upd_time(DateTime->now);
 $self->upd_by($Curr_User);

 # Superclass method does real work
 $self->$orig(@_);
 say $self->name, ' updated';
}

9th February 2013 154

Overriding delete()
 Run subclass method in place of superclass

method
 override delete => sub {
 my $self = shift;

 # Set deleted flag
 $self->deleted(1);

 # Don't call superclass method!
 $self->update;
}

9th February 2013 155

Adding Roles

 Moose roles are pre-packaged features that
can be added into your class

 Like mixins or interfaces in other OO
languages

 Added with the keyword “with”

9th February 2013 156

Role Example
 package App::Schema::Result::SomeTable;

use Moose;
use MooseX::NonMoose;

extends 'DBIx::Class::Core';
with 'Some::Clever::Role';

9th February 2013 157

DBIC::Schema::Loader

 DBIx::Class::Schema::Loader has built-in
support for Moose

 use_moose option
 With dbicdump
 $ dbicdump -o use_moose=1 CD::Schema \

 dbi:mysql:database=cd root ''

 Creates classes with the Moose lines
included

Deploying Schemas

9th February 2013

Changing Schemas

 Database schemas change over time
 Tables added
 Columns added
 Column definitions change
 DBIC has tools to manage that

9th February 2013

Don't Repeat Yourself

 We have two definitions of our database
schema

 DDL

 CREATE TABLE, etc

 DBIC

 Perl code

 Choose one as canonical source

9th February 2013

DDL vs DBIC

 We can create DBIC code from DDL

 DBIx::Class::Schema::Loader

 We can create DDL from DBIC

 $schema->deploy()

9th February 2013

Deploy

 Schema objects have a deploy() method
 Generates DDL

 Using SQL::Translator

 Applies it to connected database

 Can also see the DDL

 deployment_statements()

 create_ddl_dir()

9th February 2013

Schema Versions

 Versions change over time
 Need to cope with that
 Add a version to our schema class
 Set $VERSION

9th February 2013

Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;

9th February 2013

Schema Versions
 package CD::Schema;
use warnings;
use strict;
use base 'DBIx::Class::Schema';

our $VERSION = '0.01';

__PACKAGE__->load_namespaces();

1;

9th February 2013

create_ddl_dir

 The create_ddl_dir() method is clever
 Given a previous version of a schema
 It can create ALTER TABLE statements
 $schema->create_ddl_dir(
 ['MySQL'], $curr_ver,
 $directory, $preversion
);

 This will be very useful

9th February 2013

Deploying Versions

 DBIC includes a module called
DBIx::Class::Schema::Versioned

 Upgrades schemas

9th February 2013

DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
 qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);

9th February 2013

DBIC::Sch::Versioned
 More changes to your schema class
 package MyApp::Schema;

use base qw/DBIx::Class::Schema/;

our $VERSION = 0.001;

__PACKAGE__->load_namespaces;

__PACKAGE__->load_components(
 qw/Schema::Versioned/
);

__PACKAGE__->upgrade_directory(
'/path/to/upgrades/'
);

9th February 2013

Create Upgrade DDL
 use Getopt::Long;
use CD::Schema;

my $preversion, $help;
GetOptions(
 'p|preversion:s' => \$preversion,
) or die;

my $schema = MyApp::Schema->connect(...);

continued...

9th February 2013

Create Upgrade DDL
 my $sql_dir = './sql';

 my $version = $schema->schema_version();

 $schema->create_ddl_dir(
 'MySQL', $version, $sql_dir,
 $preversion
);

 Creates all the DDL you need
 Includes versioning tables

9th February 2013

Upgrade DB
 use CD::Schema;
my $schema = CD::Schema->connect(...);

if ($schema->get_db_version()) {
 # Runs all the upgrade SQL
 $schema->upgrade();
} else {
 # Schema is unversioned
 # Installs empty tables
 $schema->deploy();
}

9th February 2013

Better Tool

 DBIC::Schema::Versioned is part of the
standard DBIC package

 DBIC::DeploymentHandler is a separate
CPAN package

 More powerful
 More flexible

9th February 2013

DBIC::DeploymentHndlr

 Advantages

 Upgrades and downgrades

 Multiple SQL files in one upgrade

 Use Perl scripts for upgrade

 Disadvantages

 Dependency hell

Replication

9th February 2013

Replication

 Some databases allow multiple copies of the
same data

 Server software keeps replicants in step
 This can aid performance
 Different clients can talk to different servers
 Data on some replicants can lag

9th February 2013

Types of Replication

 Master-Slave

 One writeable copy of the database

 Many readable replicants

 e.g. MySQL

9th February 2013

Types of Replication

 Multiple Master

 Many writeable copies

 Potential for deadlocks

 e.g. Sybase

9th February 2013

DBIC & Replication

 DBIC has beta support for master/slave
replication

 Directs all writes to master connection
 Directs all reads to slave connection

9th February 2013

DBIC & Replication

 Set the storage_type attribute on our schema
object

 my $schema = CD::Schema->connect(...);

$schema->storage_type([
 '::DBI::Replicated',
 { balancer => 'Random' },
]);

9th February 2013

Add Slaves

 Add slave connections
 $schema->storage->connect_replicants(
 [$dsn1, $user, $pass, \%opts],
 [$dsn2, $user, $pass, \%opts],
 [$dsn3, $user, $pass, \%opts],
);

9th February 2013

Use Schema

 Use schema as usual
 Reads are delegated to a random slave
 Writes are delegated to the master
 You can force a read to the master
 $rs->search({ ... },
 { force_pool => 'master' });

 Avoid race conditions

Further Information

9th February 2013

Documentation

 Lots of good DBIC documentation

 perldoc DBIx::Class

 perldoc DBIx::Class::Manual

 DBIx::Class::Manual::SQLHackers

 Separate documentation distribution

9th February 2013

Support

 Web site

 http://www.dbix-class.org/

 Mailing list

 See support page on web site

 IRC channel

 #dbix-class on irc.perl.org

9th February 2013

Books

 Good coverage in The Definitive Guide to
Catalyst

 Not completely up to date

 DBIC book being written

 Schedule unknown

That's All Folks

• Any Questions?

• Any Questions?

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51
	ページ 52
	ページ 53
	ページ 54
	ページ 55
	ページ 56
	ページ 57
	ページ 58
	ページ 59
	ページ 60
	ページ 61
	ページ 62
	ページ 63
	ページ 64
	ページ 65
	Creating References
	ページ 67
	ページ 68
	ページ 69
	ページ 70
	ページ 71
	ページ 72
	ページ 73
	ページ 74
	ページ 75
	ページ 76
	ページ 77
	ページ 78
	ページ 79
	ページ 80
	ページ 81
	ページ 82
	ページ 83
	ページ 84
	Using References
	ページ 86
	ページ 87
	ページ 88
	ページ 89
	ページ 90
	ページ 91
	ページ 92
	ページ 93
	ページ 94
	ページ 95
	ページ 96
	ページ 97
	ページ 98
	Why Use References?
	ページ 100
	ページ 101
	ページ 102
	ページ 103
	ページ 104
	Why Use Reference?
	Complex Data Structures
	Complex Data Structure
	More Complex Data Structures
	ページ 109
	ページ 110
	ページ 111
	ページ 112
	ページ 113
	ページ 114
	ページ 115
	ページ 116
	ページ 117
	ページ 118
	ページ 119
	ページ 120
	ページ 121
	ページ 122
	ページ 123
	ページ 124
	ページ 125
	ページ 126
	ページ 127
	ページ 128
	ページ 129
	ページ 130
	ページ 131
	ページ 132
	ページ 133
	ページ 134
	ページ 135
	ページ 136
	ページ 137
	ページ 138
	ページ 139
	ページ 140
	ページ 141
	ページ 142
	ページ 143
	ページ 144
	ページ 145
	ページ 146
	ページ 147
	ページ 148
	ページ 149
	ページ 150
	ページ 151
	ページ 152
	ページ 153
	ページ 154
	ページ 155
	ページ 156
	ページ 157
	ページ 158
	ページ 159
	ページ 160
	ページ 161
	ページ 162
	ページ 163
	Why Use References
	ページ 165
	ページ 166
	ページ 167
	ページ 168
	ページ 169
	ページ 170
	ページ 171
	ページ 172
	ページ 173
	ページ 174
	ページ 175
	ページ 176
	ページ 177
	ページ 178
	ページ 179
	ページ 180
	ページ 181
	ページ 182
	ページ 183
	ページ 184
	ページ 185
	ページ 186
	ページ 187
	ページ 188

